
Form & Function
in Software

Richard P. Gabriel phd mfa

<1>

Confusionists and superficial
intellectuals...

...move ahead...

...while the ‘deep thinkers’ descend
into the darker regions of the

status quo...

...or, to express it in a different way,
they remain stuck in the mud.

–Paul Feyerabend

<2>

(defun factorial (n)
 (cond ((= n 0) 1)
 (t (* n (factorial (- n 1))))))

(defun eval (form env)
 (cond
 ((null form) nil)
 ((numberp form) form)
 ((stringp form) form)
 ((eq t form) form)
 ((atom form)
 (cond
 ((get form 'APVAL))
 (t (lookup form env))))
 ((eq (car form) 'quote) (car (cdr form)))
 ((eq (car form) 'cond) (evalcond (cdr form) env))
 (t (apply (car form) (evallist (cdr form) env) env))))

(defun apply (fct parms env)
 (cond
 ((atom fct)
 (cond
 ((eq fct 'car) (car (car parms)))
 ((eq fct 'cdr) (cdr (car parms)))
 ((eq fct 'cons) (cons (car parms) (car (cdr parms))))
 ((eq fct 'get) (get (car parms) (car (cdr parms))))
 ((eq fct 'atom) (atom (car parms)))
 ((eq fct 'error) (error (string parms)))
 ((eq fct 'eq) (eq (car parms) (car (cdr parms))))
 (t (cond
 ((get fct 'EXPR)
 (apply (get fct 'EXPR) parms env) parms env)
 (t (apply (lookup fct env) parms env))))))
 ((eq (car fct) 'lambda)
 (eval (car (cdr (cdr fct)))
 (update (car (cdr fct)) parms env)))
 (t (apply (eval fct env) parms env))))

(defun evalcond (conds env)
 (cond
 ((null conds) nil)
 ((eval (car (car conds)) env)
 (eval (car (cdr (car conds))) env))
 (t (evalcond (cdr conds) env))))

(defun eval (form env)(cond ((null form) nil) ((numberp form)
form) ((stringp form) form) ((eq t form) form) ((atom form)
(cond ((get form 'APVAL)) (t (lookup form env)))) ((eq (car
form) 'quote) (car (cdr form))) ((eq (car form) 'cond)
(evalcond (cdr form) env)) (t (apply (car form) (evallist
(cdr form) env) env))))(defun apply (fct parms env) (cond
((atom fct) (cond ((eq fct 'car) (car (car parms))) ((eq fct
'cdr) (cdr (car parms))) ((eq fct 'cons) (cons (car parms)
(car (cdr parms)))) ((eq fct 'get) (get (car parms) (car (cdr
parms)))) ((eq fct 'atom) (atom (car parms))) ((eq fct
'error) (error (string parms))) ((eq fct 'eq) (eq (car parms)
(car (cdr parms)))) (t (cond ((get fct 'EXPR) (apply (get fct
'EXPR) parms env) parms env) (t (apply (lookup fct env) parms
env)))))) ((eq (car fct) 'lambda) (eval (car (cdr (cdr fct)))
(update (car (cdr fct)) parms env))) (t (apply (eval fct env)
parms env))))(defun evalcond (conds env) (cond ((null conds)
nil) ((eval (car (car conds)) env) (eval (car (cdr (car
conds))) env)) (t (evalcond (cdr conds) env))))

form and function can be as disjoint
as you care to have it

(factorial 10) -> 3628800

(defun eval (form env)
 (cond ((eq form 't) t)
 ((eq form 1) (format t "!~%") nil)
 ((atom form) (lookup form env))
 ((eq (car form) '*) (format t " Screw you!")
 (eval (caddr form) env))
 ((eq (car form) '=) (= 0 (lookup (caddr form) env)))
 ((eq (car form) '-) (- (lookup (cadr form) env) 1))
 ((eq (car form) 'cond) (evcond (cdr form) env))
 (t
 (apply (car form) (evlist (cdr form) env) env))))

(defun apply (fn args env)
 (let ((fndef (lookup fn env)))
 (eval (cadr fndef) (update (car fndef) args env))))

(defun evcond (forms env)
 (cond ((null forms) nil)
 ((eval (car (car forms)) env)
 (eval (cadr (car forms)) env))
 (t (evcond (cdr forms) env))))

(defun update (l1 l2 env)
 (cond ((null l1) env)
 (t (update (cdr l1) (cdr l2) (push (list (car l1) (car l2)) env)))))

(defun lookup (var env)
 (cadr (assoc var env)))

(defun evlist (l env)
 (mapcar #'(lambda (x) (eval x env)) l))

(factorial 10) ->

Screw you! Screw you! Screw you! Screw you! Screw you!
Screw you! Screw you! Screw you! Screw you! Screw you!!
NIL

the same form can have many functions...

...& the same function can be expressed
in many forms

form1 form2

form3 form4
Function

but, an interpreter is another form...

Form Function

Form Function

Interpreter1

Form Function

Form Function

Form Function

Interpreter1

Interpreter2

Form Function

Form Function

Form Function

Interpreter1

Interpreter2

Form Function

Interpreter3

Form Function

Form Function

Interpreter1

almost any number of interpreters can produce
the same result

∀form, ∀ function, ∃ interpreter st
form -[interpreter]-> function

in the real world...

form <-[laws of physics?]-> function

a door must be large enough...

...for what passes through...

...& a table must be flat...

...so what it supports does not slip

such laws are the essential interpreter...

...everything else is contingent

and perhaps in the real world...

form <-[design]- function

[design]

|
^ constrained

constrained

form <-[design]- function

[design]

|
^| ^ constrained

constrained

in the software world...

function
^
|

design

function
^
|

design

form
^
|

design

function
^
|

design

form
^
|

design

function
^
|

design

form
^
|

design

are all software interpreters contingent?

Physical Constraints
on Computing

P=NP?

size and speed of memory

speed of processors

speed of communications

density of computational resources

limited resources
unlimited imagination

...but it’s rarely this desperate...

<3>

Other Forms of Form

Model Purpose Languages
procedural control Pascal, Algol
functional composition Lisp, Haskell
logic constraints Prolog
object-oriented simulation Smalltalk, Java
hardware OS C, C++
string transformation Perl
array collections APL
concurrency events threading?
...

invent an intellectual structure...

...describing a programming model...

...that makes it easier to program things
that we think of that way

OO: objects sending messages to each other

<4>

other forms of form

Johnniac

G5

Sony Personal Entertainment Communicator

QRIO

~50 computers

Boeing 777 Flight Deck

<5>

many excellent programs...

...exhibit common local characteristics...

...not the same, but similar...

...and they represent sketches of form...

...giving rise to

excellent function,
sturdy structure,

 and palpable beauty

they are called “patterns,”...

...and they are our best hope for a
lasting connection between

 form and function in software

<6>

form creates function for the
essential interpreter

form creates aesthetics for the
contingent interpreter

software is the discipline where
form and function

are least entangled

last thought:

(factorial 10)

!

