Common Lisp Object System Specification

2. Functions in the Programmer Interface

Authors: Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel,
Sonya E. Keene, Gregor Kiczales, and David A. Moon.

Draft Dated: June 15, 1988
All Rights Reserved

The distribution and publication of this document are not restricted. In order to
preserve the integrity of the specification, any publication or distribution must
reproduce this document in its entirety, preserve its formatting, and include this
title page.

For information about obtaining the sources for this document, send an Internet
message to common-lisp-object-system-specification-request@sail.stanford.edu.

The authors wish to thank Patrick Dussud, Kenneth Kahn, Jim Kempf,
Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L. White
for their contributions to this document.

At the X3J13 meeting on June 15, 1988, the following motion was adopted:

“The X3J13 Committee hereby accepts chapters 1 and 2 of the Common Lisp
Object System, as defined in document 88-002R, for inclusion in the Common
Lisp language being specified by this committee. Subsequent changes will be
handled through the usual editorial and cleanup processes.”

Functions in the Programmer Interface 2—1

CONTENTS

Introduction 2-3
Notation 2-6
add-method 2-8
call-method 2-9
call-mext-method 2-10
change-class 2-12
class-name, (setf class-name) 2-15
class-0f . . 2-16
compute-applicable-methods 2-17
defclass . . . 2-18
defgeneric 2-24
define-method-combination 2-28
defmethod 2-37
describe 2-40
documentation, (setf documentation) 2-41
ensure-generic-function 2-44
find-class 2-46
find-method 2-47
function-keywords 2-48
generic-flet 2-49
generic-function 2-51
generic-labels 2-53
initialize-instance 2-55
invalid-method-error 2-57
make-inStance 2-58
make-instances-obsolete 2-59
method-combination-error 2-60
method-qualifiers 2-61
next-method-p 2-62
no-applicable-method 2-63
no-next-method 2-64
print-object 2-65
reinitialize-instance 2-67
remove-method 2-69
shared-initialize 2-70
slot-boundp 2-73
slot-exists-p 2-74
slot-makunbound 2-75
slot-missing 2-76
slot-unbound . .. 2-77
slot-value 2-78
symbol-macrolet 2-79
update-instance-for-different-class 2-81
update-instance-for-redefined-class 2-83

2—2 Common Lisp Object System Specification

WIth-aCCeSSOTS 2-86
with-added-methods 2-88
With-slots 2-90

Functions in the Programmer Interface 2—3

2—4 Common Lisp Object System Specification

Introduction

Syntax:

This chapter describes the functions, macros, special forms, and generic functions provided by the
Common Lisp Object System Programmer Interface. The Programmer Interface comprises the
functions and macros that are sufficient for writing most object-oriented programs.

This chapter is reference material that requires an understanding of the basic concepts of the
Common Lisp Object System. The functions are arranged in alphabetical order for convenient
reference.

The description of each function, macro, special form, and generic function includes its purpose,
its syntax, the semantics of its arguments and returned values, and often an example and cross-
references to related functions.

The syntax description for a function, macro, or special form describes its parameters. The
following is an example of the format for the syntax description of a function:

F 1 y &optional z &key k [Generic Function]

This description indicates that the generic function F has two required parameters, z and y. In
addition, there is an optional parameter z and a keyword parameter k.

The generic functions described in this chapter are all standard generic functions. They all use
standard method combination.

The description of a generic function includes descriptions of the methods that are defined on
that generic function by the Common Lisp Object System. A method signature is used to
describe the parameters and parameter specializers for each method. The following is an example
of the format for a method signature:

Method Signature:

F (z class) (y t) &optional z &key k [Primary Method)

This signature indicates that this method on the generic function F has two required parameters,
x, which must be an instance of the class class, and y, which can be any object. In addition, there
is an optional parameter z and a keyword parameter k. This signature also indicates that this
method on F is a primary method and has no qualifiers.

The syntax description for a generic function describes the lambda-list of the generic function
itself, while the method signatures describe the lambda-lists of the defined methods.

Any implementation of the Common Lisp Object System is allowed to provide additional methods
on the generic functions described in this chapter.

Functions in the Programmer Interface 2—5

It is useful to categorize the functions and macros according to their role in this standard:

e Tools used for simple object-oriented programming

These tools allow for defining new classes, methods, and generic functions, and for making
instances. Some tools used within method bodies are also listed here. Some of the macros
listed here have a corresponding function that performs the same task at a lower level of
abstraction.

call-next-method
change-class
defclass
defgeneric
defmethod
generic-flet
generic-function
generic-labels
initialize-instance
make-instance
next-method-p
slot-boundp
slot-value
with-accessors
with-added-methods
with-slots

e Functions underlying the commonly used macros

add-method

class-name
compute-applicable-methods
ensure-generic-function
find-class

find-method
function-keywords
make-instances-obsolete
no-applicable-method
no-next-method
reinitialize-instance
remove-method
shared-initialize

slot-exists-p
slot-makunbound
slot-missing

slot-unbound
update-instance-for-different-class

2—6 Common Lisp Object System Specification

update-instance-for-redefined-class
Tools for declarative method combination

call-method
define-method-combination
invalid-method-error
method-combination-error
method-qualifiers

General Common Lisp support tools

class-of

describe
documentation
print-object
symbol-macrolet

Functions in the Programmer Interface 2-7

Notation

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of the
Object System. This section discusses the syntax of BNF expressions. The primary extension
used is the following:

[O]

An expression of this form will appear whenever a list of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol O represents a description of the
syntax of some number of syntactic elements to be spliced; that description must be of the form

O] ...|On

where each O; can be either of the form S or of the form S*. The expression [O] means that a
list of the form

(04, ...04;) 1<
is spliced into the enclosing expression, such that if n # m and 1 < n,m < j, then either
0;, #0;, or O; =0, =y, where for some 1 <k < N, Oy is of the form Q.

For example, the expression
(x[a]Bx[c]y)
means that at most one A, any number of B’s, and at most one C can occur in any order. It is a
description of any of these:
(x y)
(xBACY

(x ABBBBBCYy)
(x CBABBBY)

but not any of these:

(xBBAACCY)
(xCBCy

In the first case, both A and C appear too often, and in the second case C appears too often.

2—8 Common Lisp Object System Specification

A simple indirection extension is introduced in order to make this new syntax more readable:
10

If O is a non-terminal symbol, the right-hand side of its definition is substituted for the entire
expression | O. For example, the following BNF is equivalent to the BNF in the previous example:

x[l0]y)

O:=A|Bx|C

Functions in the Programmer Interface 2—-9

add-method Standard Generic Function

Purpose:

The generic function add-method adds a method to a generic function. It destructively modifies
the generic function and returns the modified generic function as its result.

Syntax:
add-method generic-function method [Generic Function]
Method Signatures:
add-method (generic-function standard-generic-function) [Primary Method)
(method method)
Arguments:
The generic-function argument is a generic function object.

The method argument is a method object. The lambda-list of the method function must be
congruent with the lambda-list of the generic function, or an error is signaled.

Values:

The modified generic function is returned. The result of add-method is eq to the generic-
function argument.

Remarks:

If the given method agrees with an existing method of the generic function on parameter special-
izers and qualifiers, the existing method is replaced. See the section “Agreement on Parameter
Specializers and Qualifiers” for a definition of agreement in this context.

If the method object is a method object of another generic function, an error is signaled.
See Also:

“Agreement on Parameter Specializers and Qualifiers”

defmethod

defgeneric

find-method

remove-method

2-10 Common Lisp Object System Specification

call-method Macro

Purpose:

Syntax:

The macro call-method is used in method combination. It hides the implementation-dependent
details of how methods are called. The macro call-method has lexical scope and can only be
used within an effective method form.

The macro call-method invokes the specified method, supplying it with arguments and with
definitions for call-next-method and for next-method-p. The arguments are the arguments
that were supplied to the effective method form containing the invocation of call-method. The
definitions of call-next-method and next-method-p rely on the list of method objects given as
the second argument to call-method.

The call-next-method function available to the method that is the first subform will call the
first method in the list that is the second subform. The call-next-method function available in
that method, in turn, will call the second method in the list that is the second subform, and so
on, until the list of next methods is exhausted.

call-method method next-method-list [Macro]

Arguments:

Values:

The method argument is a method object; the next-method-list argument is a list of method
objects.

A list whose first element is the symbol make-method and whose second element is a Lisp form
can be used instead of a method object as the first subform of call-method or as an element of
the second subform of call-method. Such a list specifies a method object whose method function
has a body that is the given form.

The result of call-method is the value or values returned by the method invocation.

See Also:

call-next-method
define-method-combination

next-method-p

Functions in the Programmer Interface 2-11

call-next-method Function

Purpose:

The function call-next-method can be used within the body of a method defined by a method-
defining form to call the next method.

The function call-next-method returns the value or values returned by the method it calls. If
there is no next method, the generic function no-next-method is called.

The type of method combination used determines which methods can invoke call-next-method.
The standard method combination type allows call-next-method to be used within primary
methods and :around methods. The standard method combination type defines the next method
as follows:

e If call-next-method is used in an :around method, the next method is the next most
specific :around method, if one is applicable.

e If there are no :around methods at all or if call-next-method is called by the least specific
:around method, other methods are called as follows:

— All the :before methods are called, in most-specific-first order. The function call-next-
method cannot be used in :before methods.

— The most specific primary method is called. Inside the body of a primary method, call-
next-method may be used to pass control to the next most specific primary method.
The generic function no-next-method is called if call-next-method is used and there
are no more primary methods.

— All the :after methods are called in most-specific-last order. The function call-next-
method cannot be used in :after methods.

For further discussion of call-next-method, see the sections “Standard Method Combination”
and “Built-in Method Combination Types.”

Syntax:
call-next-method &rest args [Function)
Arguments:

When call-next-method is called with no arguments, it passes the current method’s original
arguments to the next method. Neither argument defaulting, nor using setq, nor rebinding
variables with the same names as parameters of the method affects the values call-next-method
passes to the method it calls.

2—-12 Common Lisp Object System Specification

call-next-method

When call-next-method is called with arguments, the next method is called with those argu-
ments. When providing arguments to call-next-method, the following rule must be satisfied
or an error is signaled: The ordered set of methods applicable for a changed set of arguments for
call-next-method must be the same as the ordered set of applicable methods for the original
arguments to the generic function. Optimizations of the error checking are possible, but they
must not change the semantics of call-next-method.

If call-next-method is called with arguments but omits optional arguments, the next method
called defaults those arguments.

Values:

The function call-next-method returns the value or values returned by the method it calls.
Remarks:

Further computation is possible after call-next-method returns.

The function call-next-method has lexical scope and indefinite extent.

For generic functions using a type of method combination defined by the short form of define-
method-combination, call-next-method can be used in :around methods only.

The function next-method-p can be used to test whether there is a next method.

If call-next-method is used in methods that do not support it, an error is signaled.
See Also:

“Method Selection and Combination”

“Standard Method Combination”

“Built-in Method Combination Types”

define-method-combination

next-method-p

no-next-method

Functions in the Programmer Interface 2—13

change-class Standard Generic Function

Purpose:

The generic function change-class changes the class of an instance to a new class. It destruc-
tively modifies and returns the instance.

If in the old class there is any slot of the same name as a local slot in the new class, the value of
that slot is retained. This means that if the slot has a value, the value returned by slot-value
after change-class is invoked is eql to the value returned by slot-value before change-class is
invoked. Similarly, if the slot was unbound, it remains unbound. The other slots are initialized as
described in the section “Changing the Class of an Instance.”

Syntax:
change-class instance new-class [Generic Function)

Method Signatures:

change-class (instance standard-object) (new-class standard-class) [Primary Method)
change-class (instance t) (new-class symbol) [Primary Method)
Arguments:

The instance argument is a Lisp object.
The new-class argument is a class object or a symbol that names a class.

If the second of the above methods is selected, that method invokes change-class on instance
and (find-class new-class).

Values:

The modified instance is returned. The result of change-class is eq to the instance argument.
Examples:

(defclass position () ()

(defclass x-y-position (position)

((x :initform O :initarg :x)
(y :initform O :initarg :y)))

2—-14 Common Lisp Object System Specification

change-class

(defclass rho-theta-position (position)
((rho :initform 0)
(theta :initform 0)))

(defmethod update-instance-for-different-class :before ((old x-y-position)
(new rho-theta-position)
&key)
;; Copy the position information from old to new to make new
;; be a rho-theta-position at the same position as old.
(let ((x (slot-value old ’x))
(y (slot-value old ’y)))
(setf (slot-value new ’rho) (sqrt (+ (x x x) (*x y y)))
(slot-value new ’theta) (atan y x))))

;55 At this point an instance of the class x-y-position can be
;55 changed to be an instance of the class rho-theta-position using
;33 change-class:

(setq pl (make-instance ’x-y-position :x 2 :y 0))
(change-class pl ’rho-theta-position)

;35 The result is that the instance bound to pl is now an instance of

;55 the class rho-theta-position. The update-instance-for-different-class
;55 method performed the initialization of the rho and theta slots based
;35 on the value of the x and y slots, which were maintained by

;53 the old instance.

Remarks:

After completing all other actions, change-class invokes the generic function update-instance-
for-different-class. The generic function update-instance-for-different-class can be used to
assign values to slots in the transformed instance.

The generic function change-class has several semantic difficulties. First, it performs a destruc-
tive operation that can be invoked within a method on an instance that was used to select that
method. When multiple methods are involved because methods are being combined, the methods
currently executing or about to be executed may no longer be applicable. Second, some imple-
mentations might use compiler optimizations of slot access, and when the class of an instance is
changed the assumptions the compiler made might be violated. This implies that a programmer
must not use change-class inside a method if any methods for that generic function access any
slots, or the results are undefined.

Functions in the Programmer Interface 2—-15

change-class

See Also:
“Changing the Class of an Instance”

update-instance-for-different-class

2-16 Common Lisp Object System Specification

class-name, (setf class-name)

Standard Generic Function

Purpose:

The generic function class-name takes a class object and returns its name.

The generic function (setf class-name) takes a class object and sets its name.

Syntax:

class-name class

(setf class-name) new-value class
Method Signatures:

class-name (class class)

(setf class-name) new-value (class class)
Arguments:

The class argument is a class object.

The new-value argument is any object.

[Generic Function)

[Generic Function)

[Primary Method)
[Primary Method)

If S is a symbol such that S =(class-name C) and C' =(find-class S), then S is the proper

Values:

The name of the given class is returned.
Remarks:

The name of an anonymous class is nil.

name of C. For further discussion, see the section “Classes.”
See Also:

“Classes”

find-class

Functions in the Programmer Interface 2—-17

class-of Function

Purpose:

The function class-of returns the class of which the given object is an instance.
Syntax:

class-of object [Function)
Arguments:

The argument to class-of may be any Common Lisp object.

Values:

The function class-of returns the class of which the argument is an instance.

2—-18 Common Lisp Object System Specification

compute-applicable-methods Function

Purpose:

Given a generic function and a set of arguments, the function compute-applicable-methods
returns the set of methods that are applicable for those arguments. The methods are sorted
according to precedence order. See the section “Method Selection and Combination.”

Syntax:
compute-applicable-methods generic-function function-arguments [Function)

Arguments:

The generic-function argument is a generic function object. The function-arguments argument is
a list of the arguments to that generic function.

Values:

The result is a list of the applicable methods in order of precedence.

See Also:

“Method Selection and Combination”

Functions in the Programmer Interface 2—19

defclass Macro

Purpose:
The macro defclass defines a new named class. It returns the new class object as its result.

The syntax of defclass provides options for specifying initialization arguments for slots, for
specifying default initialization values for slots, and for requesting that methods on specified
generic functions be automatically generated for reading and writing the values of slots. No
reader or writer functions are defined by default; their generation must be explicitly requested.

Defining a new class also causes a type of the same name to be defined. The predicate (typep
object class-name) returns true if the class of the given object is class-name itself or a subclass
of the class class-name. A class object can be used as a type specifier. Thus (typep object class)
returns true if the class of the object is class itself or a subclass of class.

2—20 Common Lisp Object System Specification

defclass

Syntax:

defclass class-name ({superclass-name}*) ({slot-specifier}*)[| class-option]

class-name::= symbol

superclass-name::= symbol

slot-specifier::= slot-name | (slot-name [| slot-option])
slot-name::= symbol

slot-option::= {:reader reader-function-name}* |
swriter writer-function-name}™ |
:accessor reader-function-name}* |
allocation allocation-type} |
initarg initarg-name}* |

{:
{:
{:initform form} |
{:
{:

A~

type type-specifier} |
documentation string}

reader-function-name::= symbol

writer-function-name::= function-specifier

function-specifier::= {symbol | (setf symbol)}

initarg-name::= symbol

allocation-type::= :instance | :class

class-option::= (:default-initargs initarg-list) |
(:documentation string) |

(:metaclass class-name)

initarg-list::= {initarg-name default-initial-value-form}*

Figure 2—-1. Syntax for defclass

Functions in the Programmer Interface 2-21

defclass

Arguments:

The class-name argument is a non-nil symbol. It becomes the proper name of the new class. If a
class with the same proper name already exists and that class is an instance of standard-class,
and if the defclass form for the definition of the new class specifies a class of class standard-
class, the definition of the existing class is replaced.

Each superclass-name argument is a non-nil symbol that specifies a direct superclass of the new
class. The new class will inherit slots and methods from each of its direct superclasses, from their
direct superclasses, and so on. See the section “Inheritance” for a discussion of how slots and
methods are inherited.

Each slot-specifier argument is the name of the slot or a list consisting of the slot name followed
by zero or more slot options. The slot-name argument is a symbol that is syntactically valid for
use as a Common Lisp variable name. If there are any duplicate slot names, an error is signaled.

The following slot options are available:

e The :reader slot option specifies that an unqualified method is to be defined on the generic
function named reader-function-name to read the value of the given slot. The reader-
function-name argument is a non-nil symbol. The :reader slot option may be specified
more than once for a given slot.

e The :writer slot option specifies that an unqualified method is to be defined on the generic
function named writer-function-name to write the value of the slot. The writer-function-name
argument is a function specifier. The :writer slot option may be specified more than once for
a given slot.

e The :accessor slot option specifies that an unqualified method is to be defined on the
generic function named reader-function-name to read the value of the given slot and that
an unqualified method is to be defined on the generic function named (setf reader-function-
name) to be used with setf to modify the value of the slot. The reader-function-name
argument is a non-nil symbol. The :accessor slot option may be specified more than once for
a given slot.

e The :allocation slot option is used to specify where storage is to be allocated for the given
slot. Storage for a slot may be located in each instance or in the class object itself. The value
of the allocation-type argument can be either the keyword :instance or the keyword :class.
The :allocation slot option may be specified once at most for a given slot. If the :allocation
slot option is not specified, the effect is the same as specifying :allocation :instance.

— If allocation-type is :instance, a local slot of the given name is allocated in each instance
of the class.

— If allocation-type is :class, a shared slot of the given name is allocated in the class object
created by this defclass form. The value of the slot is shared by all instances of the class.
If a class C defines such a shared slot, any subclass C of Cy will share this single slot
unless the defclass form for Cs specifies a slot of the same name or there is a superclass

2—22 Common Lisp Object System Specification

defclass

of Cy that precedes C; in the class precedence list of C; and that defines a slot of the
same name.

The :initform slot option is used to provide a default initial value form to be used in the
initialization of the slot. The :initform slot option may be specified once at most for a
given slot. This form is evaluated every time it is used to initialize the slot. The lexical
environment in which this form is evaluated is the lexical environment in which the def-
class form was evaluated. Note that the lexical environment refers both to variables and to
functions. For local slots, the dynamic environment is the dynamic environment in which
make-instance was called; for shared slots, the dynamic environment is the dynamic envi-
ronment in which the defclass form was evaluated. See the section “Object Creation and
Initialization.”

No implementation is permitted to extend the syntax of defclass to allow (slot-name form)
as an abbreviation for (slot-name :initform form).

The :initarg slot option declares an initialization argument named initarg-name and specifies
that this initialization argument initializes the given slot. If the initialization argument has a
value in the call to initialize-instance, the value will be stored into the given slot, and the
slot’s :initform slot option, if any, is not evaluated. If none of the initialization arguments
specified for a given slot has a value, the slot is initialized according to the :initform slot
option, if specified. The :initarg slot option can be specified more than once for a given slot.
The initarg-name argument can be any symbol.

The :type slot option specifies that the contents of the slot will always be of the specified
data type. It effectively declares the result type of the reader generic function when applied
to an object of this class. The result of attempting to store in a slot a value that does not
satisfy the type of the slot is undefined. The :type slot option may be specified once at most
for a given slot. The :type slot option is further discussed in the section “Inheritance of Slots
and Slot Options.”

The :documentation slot option provides a documentation string for the slot.

Each class option is an option that refers to the class as a whole or to all class slots. The follow-
ing class options are available:

The :default-initargs class option is followed by a list of alternating initialization argument
names and default initial value forms. If any of these initialization arguments does not appear
in the initialization argument list supplied to make-instance, the corresponding default
initial value form is evaluated, and the initialization argument name and the form’s value
are added to the end of the initialization argument list before the instance is created (see
the section “Object Creation and Initialization”). The default initial value form is evaluated
each time it is used. The lexical environment in which this form is evaluated is the lexical
environment in which the defclass form was evaluated. The dynamic environment is the
dynamic environment in which make-instance was called. If an initialization argument
name appears more than once in a :default-initargs class option, an error is signaled. The
:default-initargs class option may be specified at most once.

Functions in the Programmer Interface 2—23

defclass

e The :documentation class option causes a documentation string to be attached to the class
name. The documentation type for this string is type. The form (documentation class-name
’type) may be used to retrieve the documentation string. The :documentation class option
may be specified once at most.

e The :metaclass class option is used to specify that instances of the class being defined are
to have a different metaclass than the default provided by the system (the class standard-
class). The class-name argument is the name of the desired metaclass. The :metaclass class
option may be specified once at most.

Values:
The new class object is returned as the result.
Remarks:

If a class with the same proper name already exists and that class is an instance of standard-
class, and if the defclass form for the definition of the new class specifies a class of class
standard-class, the existing class is redefined, and instances of it (and its subclasses) are up-
dated to the new definition at the time that they are next accessed. For details, see “Redefining
Classes.”

Note the following rules of defclass for standard classes:

e It is not required that the superclasses of a class be defined before the defclass form for that
class is evaluated.

e All the superclasses of a class must be defined before an instance of the class can be made.

e A class must be defined before it can be used as a parameter specializer in a defmethod
form.

The Object System may be extended to cover situations where these rules are not obeyed.

Some slot options are inherited by a class from its superclasses, and some can be shadowed or
altered by providing a local slot description. No class options except :default-initargs are
inherited. For a detailed description of how slots and slot options are inherited, see the section
“Inheritance of Slots and Slot Options.”

The options to defclass can be extended. It is required that all implementations signal an error if
they observe a class option or a slot option that is not implemented locally.

It is valid to specify more than one reader, writer, accessor, or initialization argument for a
slot. No other slot option may appear more than once in a single slot description, or an error is
signaled.

If no reader, writer, or accessor is specified for a slot, the slot can only be accessed by the func-
tion slot-value.

2—24 Common Lisp Object System Specification

defclass

See Also:
“Classes”
“Inheritance”
“Redefining Classes”
“Determining the Class Precedence List”
“Object Creation and Initialization”
slot-value
make-instance

initialize-instance

Functions in the Programmer Interface 2—25

defgeneric Macro

Purpose:

The macro defgeneric is used to define a generic function or to specify options and declarations
that pertain to a generic function as a whole.

If (fboundp function-specifier) is nil, a new generic function is created. If (symbol-function
function-specifier) is a generic function, that generic function is modified. If function-specifier
names a non-generic function, a macro, or a special form, an error is signaled.

Each method-description defines a method on the generic function. The lambda-list of each
method must be congruent with the lambda-list specified by the lambda-list option. If this
condition does not hold, an error is signaled. See the section “Congruent Lambda-Lists for All
Methods of a Generic Function” for a definition of congruence in this context.

The macro defgeneric returns the generic function object as its result.

Syntax:
defgeneric function-specifier lambda-list [| option | method-description® | [Macro]
function-specifier::= {symbol | (setf symbol)}

lambda-list::= ({var}*
[&optional {wvar | (var)}*]
[&rest var]
&key {var | ({var | (keyword var)})}*
[¢allow-other-keys| 1)

option::= (:argument-precedence-order {pammeter—name}+) |
(declare {declaration}™) |
(:documentation string) |
(:method-combination symbol {arg}*) |
(:generic-function-class class-name) |
(:method-class class-name)

method-description::= (:method {method-qualifier}* specialized-lambda-list
{declaration | documentation}* {form}*)

method-qualifier::= non-nil-atom

2—-26 Common Lisp Object System Specification

defgeneric

specialized-lambda-list::= ({var | (var parameter-specializer-name)}*

[&optional {var | (var Linitform [supplied-p-parameter] 1)}*]

[&rest var]

[&key {var | ({var | (keyword var)} Linitform [supplied-p-parameter] 1)}*
[¢allow-other-keys]]

[&aux {var | (var [initform])}*])

parameter-specializer-name::= symbol | (eql eql-specializer-form)

Arguments:

The function-specifier argument is a non-nil symbol or a list of the form (setf symbol).

The lambda-list argument is an ordinary function lambda-list with these exceptions:

The use of &aux is not allowed.

Optional and keyword arguments may not have default initial value forms nor use supplied-p
parameters. The generic function passes to the method all the argument values passed to it,
and only those; default values are not supported. Note that optional and keyword arguments
in method definitions, however, can have default initial value forms and can use supplied-p
parameters.

The following options are provided. A given option may occur only once, or an error is signaled.

The :argument-precedence-order option is used to specify the order in which the re-
quired arguments in a call to the generic function are tested for specificity when selecting a
particular method. Each required argument, as specified in the lambda-list argument, must
be included exactly once as a parameter-name so that the full and unambiguous precedence
order is supplied. If this condition is not met, an error is signaled.

The declare option is used to specify declarations that pertain to the generic function. The
following standard Common Lisp declaration is allowed:

— An optimize declaration specifies whether method selection should be optimized for
speed or space, but it has no effect on methods. To control how a method is optimized,
an optimize declaration must be placed directly in the defmethod form or method
description. The optimization qualities speed and space are the only qualities this
standard requires, but an implementation can extend the Common Lisp Object System
to recognize other qualities. A simple implementation that has only one method selection
technique and ignores the optimize declaration is valid.

The special, ftype, function, inline, notinline, and declaration declarations are not
permitted. Individual implementations can extend the declare option to support additional
declarations. If an implementation notices a declaration that it does not support and that has
not been proclaimed as a non-standard declaration name in a declaration proclamation, it
should issue a warning.

Functions in the Programmer Interface 2—27

defgeneric

Values:

e The :documentation argument associates a documentation string with the generic function.
The documentation type for this string is function. The form (documentation function-
specifier ’function) may be used to retrieve this string.

e The :generic-function-class option may be used to specify that the generic function is to
have a different class than the default provided by the system (the class standard-generic-
function). The class-name argument is the name of a class that can be the class of a generic
function. If function-specifier specifies an existing generic function that has a different value
for the :generic-function-class argument and the new generic function class is compatible
with the old, change-class is called to change the class of the generic function; otherwise an
error is signaled.

e The :method-class option is used to specify that all methods on this generic function
are to have a different class from the default provided by the system (the class standard-
method). The class-name argument is the name of a class that is capable of being the class
of a method.

e The :method-combination option is followed by a symbol that names a type of method
combination. The arguments (if any) that follow that symbol depend on the type of method
combination. Note that the standard method combination type does not support any ar-
guments. However, all types of method combination defined by the short form of define-
method-combination accept an optional argument named order, defaulting to :most-
specific-first, where a value of :most-specific-last reverses the order of the primary meth-
ods without affecting the order of the auxiliary methods.

The method-description arguments define methods that will be associated with the generic
function. The method-qualifier and specialized-lambda-list arguments in a method description are
the same as for defmethod.

The form arguments specify the method body. The body of the method is enclosed in an implicit
block. If function-specifier is a symbol, this block bears the same name as the generic function. If
function-specifier is a list of the form (setf symbol), the name of the block is symbol.

The generic function object is returned as the result.

Remarks:

The effect of the defgeneric macro is as if the following three steps were performed: first,
methods defined by previous defgeneric forms are removed; second, ensure-generic-function
is called; and finally, methods specified by the current defgeneric form are added to the generic
function.

If no method descriptions are specified and a generic function of the same name does not already
exist, a generic function with no methods is created.

2—28 Common Lisp Object System Specification

defgeneric

The lambda-list argument of defgeneric specifies the shape of lambda-lists for the methods on
this generic function. All methods on the resulting generic function must have lambda-lists that
are congruent with this shape. If a defgeneric form is evaluated and some methods for that
generic function have lambda-lists that are not congruent with that given in the defgeneric form,
an error is signaled. For further details on method congruence, see “Congruent Lambda-Lists for
All Methods of a Generic Function”

Implementations can extend defgeneric to include other options. It is required that an imple-
mentation signal an error if it observes an option that is not implemented locally.

See Also:
“Congruent Lambda-Lists for All Methods of a Generic Function”
defmethod
ensure-generic-function

generic-function

Functions in the Programmer Interface 2—29

define-method-combination Macro

Purpose:
The macro define-method-combination is used to define new types of method combination.

There are two forms of define-method-combination. The short form is a simple facility for the
cases that are expected to be most commonly needed. The long form is more powerful but more
verbose. It resembles defmacro in that the body is an expression, usually using backquote, that
computes a Lisp form. Thus arbitrary control structures can be implemented. The long form also
allows arbitrary processing of method qualifiers.

Syntax:
define-method-combination name [| short-form-option | [Macro]
short-form-option::= :documentation string |
:identity-with-one-argument boolean |
:operator operator |
define-method-combination name lambda-list [Macro]

({method-group-specifier }*)

[(:arguments . lambda-list)]
[(:generic-function generic-function-symbol)]
{declaration | doc-string}*

{form}*

method-group-specifier::= (variable {{qualiﬁer—pattern}+ | predicate}
[l long-form-option |)

long-form-option::= :description format-string |

:order order |
:required boolean

Arguments:

In both the short and long forms, name is a symbol. By convention, non-keyword, non-nil
symbols are usually used.

2—-30 Common Lisp Object System Specification

define-method-combination

Arguments of the Short Form:

The short form syntax of define-method-combination is recognized when the second subform
is a non-nil symbol or is not present. When the short form is used, name is defined as a type

of method combination that produces a Lisp form (operator method-call method-call ...). The
operator is a symbol that can be the name of a function, macro, or special form. The operator
can be specified by a keyword option; it defaults to name.

Keyword options for the short form are the following:
e The :documentation option is used to document the method-combination type.

e The :identity-with-one-argument option enables an optimization when boolean is true (the
default is false). If there is exactly one applicable method and it is a primary method, that
method serves as the effective method and operator is not called. This optimization avoids
the need to create a new effective method and avoids the overhead of a function call. This
option is designed to be used with operators such as progn, and, +, and max.

e The :operator option specifies the name of the operator. The operator argument is a sym-
bol that can be the name of a function, macro, or special form. By convention, name and
operator are often the same symbol. This is the default, but it is not required.

None of the subforms is evaluated.

These types of method combination require exactly one qualifier per method. An error is signaled
if there are applicable methods with no qualifiers or with qualifiers that are not supported by the
method combination type.

A method combination procedure defined in this way recognizes two roles for methods. A method
whose one qualifier is the symbol naming this type of method combination is defined to be a
primary method. At least one primary method must be applicable or an error is signaled. A
method with :around as its one qualifier is an auxiliary method that behaves the same as a
:around method in standard method combination. The function call-next-method can only be
used in :around methods; it cannot be used in primary methods defined by the short form of the
define-method-combination macro.

A method combination procedure defined in this way accepts an optional argument named order,
which defaults to :most-specific-first. A value of :most-specific-last reverses the order of the
primary methods without affecting the order of the auxiliary methods.

The short form automatically includes error checking and support for :around methods.

For a discussion of built-in method combination types, see the section “Built-in Method Combina-
tion Types.”

Functions in the Programmer Interface 2-31

define-method-combination

Arguments of the Long Form:

The long form syntax of define-method-combination is recognized when the second subform is
a list.

The lambda-list argument is an ordinary lambda-list. It receives any arguments provided after the
name of the method combination type in the :method-combination option to defgeneric.

A list of method group specifiers follows. Each specifier selects a subset of the applicable methods
to play a particular role, either by matching their qualifiers against some patterns or by testing
their qualifiers with a predicate. These method group specifiers define all method qualifiers that
can be used with this type of method combination. If an applicable method does not fall into

any method group, the system signals the error that the method is invalid for the kind of method
combination in use.

Each method group specifier names a variable. During the execution of the forms in the body
of define-method-combination, this variable is bound to a list of the methods in the method
group. The methods in this list occur in most-specific-first order.

A qualifier pattern is a list or the symbol *. A method matches a qualifier pattern if the method’s
list of qualifiers is equal to the qualifier pattern (except that the symbol * in a qualifier pattern
matches anything). Thus a qualifier pattern can be one of the following: the empty list (),

which matches unqualified methods; the symbol *, which matches all methods; a true list, which
matches methods with the same number of qualifiers as the length of the list when each qualifier
matches the corresponding list element; or a dotted list that ends in the symbol * (the * matches
any number of additional qualifiers).

Each applicable method is tested against the qualifier patterns and predicates in left-to-right
order. As soon as a qualifier pattern matches or a predicate returns true, the method becomes a
member of the corresponding method group and no further tests are made. Thus if a method
could be a member of more than one method group, it joins only the first such group. If a
method group has more than one qualifier pattern, a method need only satisfy one of the qualifier
patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier patterns in a method group
specifier. The predicate is called for each method that has not been assigned to an earlier method
group; it is called with one argument, the method’s qualifier list. The predicate should return true
if the method is to be a member of the method group. A predicate can be distinguished from a
qualifier pattern because it is a symbol other than nil or *.

If there is an applicable method whose qualifiers are not valid for the method combination type,
the function invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier patterns or predicate.
Keyword options can be distinguished from additional qualifier patterns because they are neither
lists nor the symbol *. The keyword options are as follows:

e The :description option is used to provide a description of the role of methods in the

2—-32 Common Lisp Object System Specification

define-method-combination

method group. Programming environment tools use (apply #’format stream format-string
(method-qualifiers method)) to print this description, which is expected to be concise.

This keyword option allows the description of a method qualifier to be defined in the same
module that defines the meaning of the method qualifier. In most cases, format-string will
not contain any format directives, but they are available for generality. If :description is
not specified, a default description is generated based on the variable name and the qualifier
patterns and on whether this method group includes the unqualified methods. The argument
format-string is not evaluated.

e The :order option specifies the order of methods. The order argument is a form that eval-
uates to :most-specific-first or :most-specific-last. If it evaluates to any other value,
an error is signaled. This keyword option is a convenience and does not add any expressive
power. If :order is not specified, it defaults to :most-specific-first.

e The :required option specifies whether at least one method in this method group is required.
If the boolean argument is non-nil and the method group is empty (that is, no applicable
methods match the qualifier patterns or satisfy the predicate), an error is signaled. This
keyword option is a convenience and does not add any expressive power. If :required is not
specified, it defaults to nil. The boolean argument is not evaluated.

The use of method group specifiers provides a convenient syntax to select methods, to divide
them among the possible roles, and to perform the necessary error checking. It is possible to
perform further filtering of methods in the body forms by using normal list-processing operations
and the functions method-qualifiers and invalid-method-error. It is permissible to use setq
on the variables named in the method group specifiers and to bind additional variables. It is also
possible to bypass the method group specifier mechanism and do everything in the body forms.
This is accomplished by writing a single method group with * as its only qualifier pattern; the
variable is then bound to a list of all of the applicable methods, in most-specific-first order.

The body forms compute and return the Lisp form that specifies how the methods are combined,
that is, the effective method. The effective method uses the macro call-method. This macro
has lexical scope and is available only in an effective method form. Given a method object in one
of the lists produced by the method group specifiers and a list of next methods, the macro call-
method will invoke the method such that call-next-method has available the next methods.

When an effective method has no effect other than to call a single method, some implementa-
tions employ an optimization that uses the single method directly as the effective method, thus
avoiding the need to create a new effective method. This optimization is active when the effective
method form consists entirely of an invocation of the call-method macro whose first subform is
a method object and whose second subform is nil. Each define-method-combination body is
responsible for stripping off redundant invocations of progn, and, multiple-value-progl, and
the like, if this optimization is desired.

Functions in the Programmer Interface 2—33

define-method-combination

Values:

The list (:arguments . lambda-list) can appear before any declarations or documentation string.
This form is useful when the method combination type performs some specific behavior as part
of the combined method and that behavior needs access to the arguments to the generic function.
Each parameter variable defined by lambda-list is bound to a form that can be inserted into the
effective method. When this form is evaluated during execution of the effective method, its value
is the corresponding argument to the generic function. If lambda-list is not congruent to the
generic function’s lambda-list, additional ignored parameters are automatically inserted until it is
congruent. Thus it is permissible for lambda-list to receive fewer arguments than the number that
the generic function expects.

Erroneous conditions detected by the body should be reported with method-combination-
error or invalid-method-error; these functions add any necessary contextual information to the
error message and will signal the appropriate error.

The body forms are evaluated inside of the bindings created by the lambda-list and method
group specifiers. Declarations at the head of the body are positioned directly inside of bindings
created by the lambda-list and outside of the bindings of the method group variables. Thus
method group variables cannot be declared.

Within the body forms, generic-function-symbol is bound to the generic function object.

If a doc-string argument is present, it provides the documentation for the method-combination
type.

The functions method-combination-error and invalid-method-error can be called from the
body forms or from functions called by the body forms. The actions of these two functions can

depend on implementation-dependent dynamic variables automatically bound before the generic
function compute-effective-method is called.

Note that two methods with identical specializers, but with different qualifiers, are not ordered
by the algorithm described in Step 2 of the method selection and combination process described
in the section “Method Selection and Combination.” Normally the two methods play different
roles in the effective method because they have different qualifiers, and no matter how they are
ordered in the result of Step 2, the effective method is the same. If the two methods play the
same role and their order matters, an error is signaled. This happens as part of the qualifier
pattern matching in define-method-combination.

The value returned by the define-method-combination macro is the new method combination
object.

2—-34 Common Lisp Object System Specification

define-method-combination

Examples:

Most examples of the long form of define-method-combination also illustrate the use of the
related functions that are provided as part of the declarative method combination facility.

;535 Examples of the short form of define-method-combination
(define-method-combination and :identity-with-one-argument t)

(defmethod func and ((x classl) y) ...)

;55 The equivalent of this example in the long form is:

(define-method-combination and

(&optional (order ’:most-specific-first))

((around (:around))

(primary (and) :order order :required t))

(let ((form (if (rest primary)
‘(and ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))
primary))
‘(call-method , (first primary) ()))))
(if around

‘(call-method ,(first around)
(,a@(rest around)

(make-method ,form)))
form)))

;55 Examples of the long form of define-method-combination

;The default method-combination technique
(define-method-combination standard ()
((around (:around))
(before (:before))
(primary () :required t)
(after (:after)))
(flet ((call-methods (methods)
(mapcar #’(lambda (method)
‘(call-method ,method ()))
methods)))
(let ((form (if (or before after (rest primary))
¢ (multiple-value-progl
(progn ,@(call-methods before)
(call-method , (first primary)
, (rest primary)))
,@(call-methods (reverse after)))

Functions in the Programmer Interface 2—35

define-method-combination

‘(call-method , (first primary) ()))))
(if around
‘(call-method ,(first around)
(,@(rest around)
(make-method ,form)))
form))))

;A simple way to try several methods until one returns non-nil
(define-method-combination or ()
((methods (or)))
‘(or ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))
methods)))

;A more complete version of the preceding
(define-method-combination or
(&optional (order ’:most-specific-first))
((around (:around))
(primary (or)))
;3 Process the order argument
(case order
(:most-specific-first)
(:most-specific-last (setq primary (reverse primary)))
(otherwise (method-combination-error "°S is an invalid order."@
:most-specific-first and :most-specific-last are the possible values."
order)))
;3 Must have a primary method
(unless primary
(method-combination-error "A primary method is required."))
;; Construct the form that calls the primary methods
(let ((form (if (rest primary)
‘(or ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))
primary))
‘(call-method , (first primary) ()))))
;3 Wrap the around methods around that form
(if around
‘(call-method ,(first around)
(,a(rest around)
(make-method ,form)))
form)))

;The same thing, using the :order and :required keyword options

(define-method-combination or
(&optional (order ’:most-specific-first))

2—-36 Common Lisp Object System Specification

define-method-combination

((around (:around))
(primary (or) :order order :required t))
(let ((form (if (rest primary)
‘(or ,@(mapcar #’(lambda (method)
‘(call-method ,method ()))
primary))
‘(call-method , (first primary) ()))))
(if around
‘(call-method ,(first around)
(,a(rest around)
(make-method ,form)))
form)))

;This short-form call is behaviorally identical to the preceding
(define-method-combination or :identity-with-one-argument t)

;0rder methods by positive integer qualifiers
; raround methods are disallowed to keep the example small
(define-method-combination example-method-combination ()
((methods positive-integer—qualifier-p))
‘(progn ,a@(mapcar #’(lambda (method)
‘(call-method ,method ()))
(stable-sort methods #’<
:key #’(lambda (method)
(first (method-qualifiers method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)
(and (= (length method-qualifiers) 1)
(typep (first method-qualifiers) ’(integer 0 *))))

;55 Example of the use of :arguments
(define-method-combination progn-with-lock ()
((methods ()))
(:arguments object)
¢ (unwind-protect
(progn (lock (object-lock ,object))
,@(mapcar #’(lambda (method)
‘(call-method ,method ()))
methods))
(unlock (object-lock ,object))))

Functions in the Programmer Interface 2—37

define-method-combination

Remarks:

The :method-combination option of defgeneric is used to specify that a generic function
should use a particular method combination type. The argument to the :method-combination

option is the name of a method combination type.
See Also:

“Method Selection and Combination”

“Built-in Method Combination Types”

call-method

method-qualifiers

method-combination-error

invalid-method-error

defgeneric

2—-38 Common Lisp Object System Specification

defmethod Macro

Purpose:

Syntax:

The macro defmethod defines a method on a generic function.

If (fboundp function-specifier) is nil, a generic function is created with default values for the
argument precedence order (each argument is more specific than the arguments to its right in

the argument list), for the generic function class (the class standard-generic-function), for the
method class (the class standard-method), and for the method combination type (the standard
method combination type). The lambda-list of the generic function is congruent with the lambda-
list of the method being defined; if the defmethod form mentions keyword arguments, the
lambda-list of the generic function will mention &key (but no keyword arguments). If function-
specifier names a non-generic function, a macro, or a special form, an error is signaled.

If a generic function is currently named by function-specifier, where function-specifier is a symbol
or a list of the form (setf symbol), the lambda-list of the method must be congruent with the
lambda-list of the generic function. If this condition does not hold, an error is signaled. See the
section “Congruent Lambda-Lists for All Methods of a Generic Function” for a definition of
congruence in this context.

defmethod function-specifier {method-qualifier}* specialized-lambda-list [Macro)
{declaration | documentation}* {form}*

function-specifier::= {symbol | (setf symbol)}
method-qualifier::= non-nil-atom

specialized-lambda-list::= ({var | (var parameter-specializer-name) }*
[&optional {var | (var Linitform [supplied-p-parameter] 1)}*]
[&rest var]
ekey {var | ({var | (keyword var)} Linitform [supplied-p-parameter] 1)}
[¢allow-other-keys]]
[&aux {var | (var [initform])}*1)

ES

parameter-specializer-name::= symbol | (eql eql-specializer-form)

Functions in the Programmer Interface 2—39

defmethod

Arguments:

Values:

The function-specifier argument is a non-nil symbol or a list of the form (setf symbol). It names
the generic function on which the method is defined.

Each method-qualifier argument is an object that is used by method combination to identify the
given method. A method qualifier is a non-nil atom. The method combination type may further
restrict what a method qualifier may be. The standard method combination type allows for
unqualified methods or methods whose sole qualifier is the keyword :before, the keyword :after,
or the keyword :around.

The specialized-lambda-list argument is like an ordinary function lambda-list except that the
names of required parameters can be replaced by specialized parameters. A specialized parameter
is a list of the form (variable-name parameter-specializer-name). Only required parameters

may be specialized. A parameter specializer name is a symbol that names a class or (eql eql-
specializer-form). The parameter specializer name (eql eql-specializer-form) indicates that the
corresponding argument must be eql to the object that is the value of eql-specializer-form for

the method to be applicable. If no parameter specializer name is specified for a given required
parameter, the parameter specializer defaults to the class named t. See the section “Introduction
to Methods” for further discussion.

The form arguments specify the method body. The body of the method is enclosed in an implicit
block. If function-specifier is a symbol, this block bears the same name as the generic function. If
function-specifier is a list of the form (setf symbol), the name of the block is symbol.

The result of defmethod is the method object.

Remarks:

The class of the method object that is created is that given by the method class option of the
generic function on which the method is defined.

If the generic function already has a method that agrees with the method being defined on
parameter specializers and qualifiers, defmethod replaces the existing method with the one
now being defined. See the section “Agreement on Parameter Specializers and Qualifiers” for a
definition of agreement in this context.

The parameter specializers are derived from the parameter specializer names as described in the
section “Introduction to Methods.”

The expansion of the defmethod macro “refers to” each specialized parameter (see the descrip-
tion of ignore in Common Lisp: The Language, p. 160). This includes parameters that have an
explicit parameter specializer name of t. This means that a compiler warning does not occur if
the body of the method does not refer to a specialized parameter. Note that a parameter that
specializes on t is not synonymous with an unspecialized parameter in this context.

2—40 Common Lisp Object System Specification

defmethod

See Also:
“Introduction to Methods”
“Congruent Lambda-Lists for All Methods of a Generic Function”

“Agreement on Parameter Specializers and Qualifiers”

Functions in the Programmer Interface 2—41

describe Standard Generic Function

Purpose:

The Common Lisp function describe is replaced by a generic function. The generic function
describe prints information about a given object on the standard output.

Each implementation is required to provide a method on the class standard-object and methods
on enough other classes so as to ensure that there is always an applicable method. Implementa-
tions are free to add methods for other classes. Users can write methods for describe for their
own classes if they do not wish to inherit an implementation-supplied method. These methods
must conform to the definition of describe as specified in Common Lisp: The Language.

Syntax:

describe object [Generic Function)
Method Signatures:

describe (object standard-object) [Primary Method)

Arguments:

The object argument may be any Common Lisp object.

Values:

The generic function describe returns no values.

2—42 Common Lisp Object System Specification

documentation, (setf documentation) Standard Generic Function

Purpose:

The Common Lisp function documentation is replaced by a generic function. The generic
function documentation returns the documentation string associated with the given object if it
is available; otherwise it returns nil.

The generic function (setf documentation) is used to update the documentation.
Syntax:
documentation z &optional doc-type [Generic Function)
(setf documentation) new-value x &optional doc-type [Generic Function]
Method Signatures:
documentation (method standard-method) &optional doc-type [Primary Method)
(setf documentation) new-value (method standard-method) [Primary Method)

&optional doc-type

documentation (generic-function standard-generic-function) [Primary Method)
%optional doc-type

(setf documentation) new-value [Primary Method)
(generic-function standard-generic-function)
&optional doc-type

documentation (class standard-class) &optional doc-type [Primary Method)
(setf documentation) new-value (class standard-class) [Primary Method)

&optional doc-type

documentation (method-combination method-combination) [Primary Method)
&optional doc-type

(setf documentation) new-value [Primary Method)
(method-combination method-combination)
&optional doc-type

Functions in the Programmer Interface 2—43

documentation, (setf documentation)

documentation (slot-description standard-slot-description) [Primary Method)

&optional doc-type

(setf documentation) new-value [Primary Method)

(slot-description standard-slot-description)
&optional doc-type

documentation (symbol symbol) &optional doc-type [Primary Method)

(setf documentation) new-value (symbol symbol) [Primary Method)

&optional doc-type

documentation (list list) &optional doc-type [Primary Method)

(setf documentation) new-value (list list) [Primary Method)

Arguments:

&optional doc-type

The first argument of documentation is either a symbol, a function specifier list of the form
(setf symbol), a method object, a class object, a generic function object, a method combination
object, or a slot description object.

e If the first argument is a method object, a class object, a generic function object, a method
combination object, or a slot description object, the second argument must not be supplied,
or an error is signaled.

e If the first argument is a symbol or a list of the form (setf symbol), the second argument
must be supplied.

The forms (documentation symbol ’function) and (documentation ’(setf symbol)
’function) return the documentation string of the function, generic function, special
form, or macro named by the symbol or list.

The form (documentation symbol ’variable) returns the documentation string of the
special variable or constant named by the symbol.

The form (documentation symbol ’structure) returns the documentation string of the
defstruct structure named by the symbol.

The form (documentation symbol ’type) returns the documentation string of the class
object named by the symbol, if there is such a class. If there is no such class, it returns
the documentation string of the type specifier named by the symbol.

The form (documentation symbol ’setf) returns the documentation string of the defsetf

2—44 Common Lisp Object System Specification

documentation, (setf documentation)

or define-setf-method definition associated with the symbol.

— The form (documentation symbol ’method-combination) returns the documentation string
of the method combination type named by the symbol.

An implementation may extend the set of symbols that are acceptable as the second argu-
ment. If a symbol is not recognized as an acceptable argument by the implementation, an
error must be signaled.

Values:

The documentation string associated with the given object is returned unless none is available, in
which case documentation returns nil.

Functions in the Programmer Interface 2—45

ensure-generic-function Punction

Purpose:

Syntax:

The function ensure-generic-function is used to define a globally named generic function with
no methods or to specify or modify options and declarations that pertain to a globally named
generic function as a whole.

If (fboundp function-specifier) is nil, a new generic function is created. If (symbol-function
function-specifier) is a non-generic function, a macro, or a special form, an error is signaled.

If function-specifier specifies a generic function that has a different value for any of the following
arguments, the generic function is modified to have the new value: :argument-precedence-
order, :declare, :documentation, :method-combination.

If function-specifier specifies a generic function that has a different value for the :lambda-list
argument, and the new value is congruent with the lambda-lists of all existing methods or there
are no methods, the value is changed; otherwise an error is signaled.

If function-specifier specifies a generic function that has a different value for the :generic-
function-class argument and if the new generic function class is compatible with the old,
change-class is called to change the class of the generic function; otherwise an error is signaled.

If function-specifier specifies a generic function that has a different value for the :method-class
argument, the value is changed, but any existing methods are not changed.

ensure-generic-function function-specifier &key :lambda-list [Function)
:argument-precedence-order
:declare
:documentation
:generic-function-class
:method-combination
:method-class
renvironment

function-specifier::= {symbol | (setf symbol)}

Arguments:

The function-specifier argument is a symbol or a list of the form (setf symbol).

The keyword arguments correspond to the option arguments of defgeneric, except that the
:method-class and :generic-function-class arguments can be class objects as well as names.

2—46 Common Lisp Object System Specification

ensure-generic-function

The :environment argument is the same as the &environment argument to macro expansion
functions. It is typically used to distinguish between compile-time and run-time environments.

The :method-combination argument is a method combination object.
Values:
The generic function object is returned.

See Also:

defgeneric

Functions in the Programmer Interface 2—47

find-class Function

Purpose:
The function find-class returns the class object named by the given symbol in the given environ-
ment.
Syntax:
find-class symbol &optional errorp environment [Function)
Arguments:

The first argument to find-class is a symbol.

If there is no such class and the errorp argument is not supplied or is non-nil, find-class signals
an error. If there is no such class and the errorp argument is nil, find-class returns nil. The
default value of errorp is t.

The optional environment argument is the same as the &environment argument to macro
expansion functions. It is typically used to distinguish between compile-time and run-time
environments.

Values:

The result of find-class is the class object named by the given symbol.

Remarks:

The class associated with a particular symbol can be changed by using setf with find-class. The
results are undefined if the user attempts to change the class associated with a symbol that is
defined as a type specifier by Common Lisp: The Language. See the section “Integrating Types
and Classes.”

2—-48 Common Lisp Object System Specification

find-method Standard Generic Function

Purpose:

The generic function find-method takes a generic function and returns the method object
that agrees on method qualifiers and parameter specializers with the method-qualifiers and
specializers arguments of find-method. See the section “Agreement on Parameter Specializers
and Qualifiers” for a definition of agreement in this context.

Syntax:

find-method generic-function method-qualifiers specializers &optional errorp [Generic Function]
Method Signatures:

find-method (generic-function standard-generic-function) [Primary Method)
method-qualifiers specializers &optional errorp

Arguments:
The generic-function argument is a generic function.

The method-qualifiers argument is a list of the method qualifiers for the method. The order of the
method qualifiers is significant.

The specializers argument is a list of the parameter specializers for the method. It must cor-
respond in length to the number of required arguments of the generic function, or an error is
signaled. This means that to obtain the default method on a given generic function, a list whose
elements are the class named t must be given.

If there is no such method and the errorp argument is not supplied or is non-nil, find-method
signals an error. If there is no such method and the errorp argument is nil, find-method returns
nil. The default value of errorp is t.

Values:

The result of find-method is the method object with the given method qualifiers and parameter
specializers.

See Also:

“Agreement on Parameter Specializers and Qualifiers”

Functions in the Programmer Interface 2—49

function- keywords Standard Generic Function

Purpose:

The generic function function-keywords is used to return the keyword parameter specifiers for a
given method.

Syntax:

function-keywords method [Generic Function]
Method Signatures:

function-keywords (method standard-method) [Primary Method)
Arguments:

The method argument is a method object.
Values:

The generic function function-keywords returns two values: a list of the explicitly named
keywords and a boolean that states whether &allow-other-keys had been specified in the
method definition.

2-50 Common Lisp Object System Specification

generic-flet Special Form

Purpose:

Syntax:

The generic-flet special form is analogous to the Common Lisp flet special form. It produces
new generic functions and establishes new lexical function definition bindings. Each generic
function is created with the set of methods specified by its method descriptions.

The special form generic-flet is used to define functions whose names are meaningful only locally
and to execute a series of forms with these function definition bindings. Any number of such local
generic functions may be defined.

The names of functions defined by generic-flet have lexical scope; they retain their local defini-
tions only within the body of the generic-flet. Any references within the body of the generic-
flet to functions whose names are the same as those defined within the generic-flet are thus
references to the local functions instead of to any global functions of the same names. The scope
of these generic function definition bindings, however, includes only the body of generic-flet,
not the definitions themselves. Within the method bodies, local function names that match those
being defined refer to global functions defined outside the generic-flet. It is thus not possible to
define recursive functions with generic-flet.

generic-flet ({(function-specifier lambda-list [| option | method-description®])}*) [Special Form)
{orm}*

function-specifier::= {symbol | (setf symbol)}

lambda-list::= ({var}*
[&optional {wvar | (var)}*]
[&rest var]
&key {var | ({var | (keyword var)})}*
[£allow-other-keys] 1)

option::= (:argument-precedence-order {parameter-name}+) |
(declare {declaration}+) |
(:documentation string) |
(:method-combination symbol {arg}*) |
(:generic-function-class class-name) |
(:method-class class-name)

Functions in the Programmer Interface 2-51

generic-flet

method-description::= (:method {method-qualifier}* specialized-lambda-list
{declaration | documentation}* {form}*)

Arguments:

The function-specifier, lambda-list, option, method-qualifier, and specialized-lambda-list arguments
are the same as for defgeneric.

A generic-flet local method definition is identical in form to the method definition part of a
defmethod.

The body of each method is enclosed in an implicit block. If function-specifier is a symbol, this
block bears the same name as the generic function. If function-specifier is a list of the form (setf
symbol), the name of the block is symbol.

Values:

The result returned by generic-flet is the value or values returned by the last form executed. If
no forms are specified, generic-flet returns nil.

See Also:

generic-labels
defmethod
defgeneric

generic-function

2—-52 Common Lisp Object System Specification

generic-function

Macro

Purpose:

The generic-function macro creates an anonymous generic function. The generic function is

created with the set of methods specified by its method descriptions.
Syntax:

generic-function lambda-list
[1 option | method-description® |

lambda-list::= ({var}*
[&optional {wvar | (var)}*]
[&rest var]
&key {var | ({var | (keyword var)})}*
[£allow-other-keys]])

option::= (:argument-precedence-order {pammeter-name}+) |
(declare {declaration}™) |
(:documentation string) |
(:method-combination symbol {arg}*) ‘
(:generic-function-class class-name) |
(:method-class class-name)

method-description::= (:method {method-qualifier}* specialized-lambda-list
{declaration | documentation}* {form}*)

Arguments:

[Macro]

The option, method-qualifier, and specialized-lambda-list arguments are the same as for def-

generic.
Values:
The generic function object is returned as the result.

Remarks:

If no method descriptions are specified, an anonymous generic function with no methods is

created.

Functions in the Programmer Interface 2—53

generic-function

See Also:
defgeneric
generic-flet
generic-labels

defmethod

2—-54 Common Lisp Object System Specification

generic-labels Special Form

Purpose:

Syntax:

The generic-labels special form is analogous to the Common Lisp labels special form. It
produces new generic functions and establishes new lexical function definition bindings. Each
generic function is created with the set of methods specified by its method descriptions.

The special form generic-labels is used to define functions whose names are meaningful only
locally and to execute a series of forms with these function definition bindings. Any number of
such local functions may be defined.

The names of functions defined by generic-labels have lexical scope; they retain their local
definitions only within the body of the generic-labels construct. Any references within the
body of the generic-labels construct to functions whose names are the same as those defined
within the generic-labels form are thus references to the local functions instead of to any global
functions of the same names. The scope of these generic function definition bindings includes the
method bodies themselves as well as the body of the generic-labels construct.

generic-labels ({(function-specifier lambda-list [Special Form]
[l option | method-description*])}*)
{form}*

function-specifier::= {symbol | (setf symbol)}

lambda-list::= ({var}*
[&optional {var | (var)}*]
[&rest var]
&key {var | ({var | (keyword var)})}*
[¢allow-other-keys| 1)

option::= (:argument-precedence-order {parameter—name}+) |
(declare {declaration}™) |
(:documentation string) |
(:method-combination symbol {arg}*) |
(:generic-function-class class-name) |
(:method-class class-name)

method-description::= (:method {method-qualifier}* specialized-lambda-list
{declaration | documentation}* {form}*)

Functions in the Programmer Interface 2—55

generic-labels

Arguments:

The function-specifier, lambda-list, option, method-qualifier, and specialized-lambda-list arguments
are the same as for defgeneric.

A generic-labels local method definition is identical in form to the method definition part of a
defmethod.

The body of each method is enclosed in an implicit block. If function-specifier is a symbol, this
block bears the same name as the generic function. If function-specifier is a list of the form (setf
symbol), the name of the block is symbol.

Values:

The result returned by generic-labels is the value or values returned by the last form executed.
If no forms are specified, generic-labels returns nil.

See Also:
generic-flet
defmethod
defgeneric

generic-function

2-56 Common Lisp Object System Specification

initialize-instance Standard Generic Function

Purpose:

The generic function initialize-instance is called by make-instance to initialize a newly
created instance. The generic function initialize-instance is called with the new instance and
the defaulted initialization arguments.

The system-supplied primary method on initialize-instance initializes the slots of the instance
with values according to the initialization arguments and the :initform forms of the slots. It
does this by calling the generic function shared-initialize with the following arguments: the
instance, t (this indicates that all slots for which no initialization arguments are provided should
be initialized according to their :initform forms), and the defaulted initialization arguments.

Syntax:

initialize-instance instance &rest initargs [Generic Function)
Method Signatures:

initialize-instance (instance standard-object) &rest initargs [Primary Method)
Arguments:

The instance argument is the object to be initialized.

The initargs argument consists of alternating initialization argument names and values.
Values:

The modified instance is returned as the result.
Remarks:

Programmers can define methods for initialize-instance to specify actions to be taken when

an instance is initialized. If only :after methods are defined, they will be run after the system-
supplied primary method for initialization and therefore will not interfere with the default behav-
ior of initialize-instance.

See Also:
“Object Creation and Initialization”
“Rules for Initialization Arguments”

“Declaring the Validity of Initialization Arguments”

Functions in the Programmer Interface 2—57

initialize-instance

shared-initialize
make-instance
slot-boundp

slot-makunbound

2—-58 Common Lisp Object System Specification

invalid-method-error Function

Purpose:

The function invalid-method-error is used to signal an error when there is an applicable
method whose qualifiers are not valid for the method combination type. The error message is
constructed by using a format string and any arguments to it. Because an implementation may
need to add additional contextual information to the error message, invalid-method-error
should be called only within the dynamic extent of a method combination function.

The function invalid-method-error is called automatically when a method fails to satisfy every
qualifier pattern and predicate in a define-method-combination form. A method combination
function that imposes additional restrictions should call invalid-method-error explicitly if it
encounters a method it cannot accept.

Syntax:

invalid-method-error method format-string &rest args [Function)
Arguments:

The method argument is the invalid method object.

The format-string argument is a control string that can be given to format, and args are any
arguments required by that string.

Remarks:

Whether invalid-method-error returns to its caller or exits via throw is implementation
dependent.

See Also:

define-method-combination

Functions in the Programmer Interface 2—59

make-instance Standard Generic Function

Purpose:
The generic function make-instance creates and returns a new instance of the given class.

The generic function make-instance may be used as described in the section “Object Creation
and Initialization.”

Syntax:
make-instance class &rest initargs [Generic Function]

Method Signatures:

make-instance (class standard-class) &rest initargs [Primary Method)
make-instance (class symbol) &rest initargs [Primary Method)
Arguments:

The class argument is a class object or a symbol that names a class. The remaining arguments
form a list of alternating initialization argument names and values.

If the second of the above methods is selected, that method invokes make-instance on the
arguments (find-class class) and initargs.

The initialization arguments are checked within make-instance. See the section “Object Cre-
ation and Initialization.”

Values:
The new instance is returned.
Remarks:

The meta-object protocol can be used to define new methods on make-instance to replace the
object-creation protocol.

See Also:
“Object Creation and Initialization”
defclass
initialize-instance

class-of

2—-60 Common Lisp Object System Specification

make-instances-obsolete Standard Generic Function

Purpose:

Syntax:

The generic function make-instances-obsolete is invoked automatically by the system when
defclass has been used to redefine an existing standard class and the set of local slots accessible
in an instance is changed or the order of slots in storage is changed. It can also be explicitly
invoked by the user.

The function make-instances-obsolete has the effect of initiating the process of updating the
instances of the class. During updating, the generic function update-instance-for-redefined-
class will be invoked.

make-instances-obsolete class [Generic Function)

Method Signatures:

make-instances-obsolete (class standard-class) [Primary Method)
make-instances-obsolete (class symbol) [Primary Method)
Arguments:

Values:

The class argument is a class object or a symbol that names the class whose instances are to be
made obsolete.

If the second of the above methods is selected, that method invokes make-instances-obsolete
on (find-class class).

The modified class is returned. The result of make-instances-obsolete is eq to the class
argument supplied to the first of the above methods.

See Also:

“Redefining Classes”

update-instance-for-redefined-class

Functions in the Programmer Interface 2-61

method-combination-error Function

Purpose:

The function method-combination-error is used to signal an error in method combination.
The error message is constructed by using a format string and any arguments to it. Because
an implementation may need to add additional contextual information to the error message,
method-combination-error should be called only within the dynamic extent of a method
combination function.

Syntax:
method-combination-error format-string &rest args [Function)
Arguments:

The format-string argument is a control string that can be given to format, and args are any
arguments required by that string.

Remarks:

Whether method-combination-error returns to its caller or exits via throw is implementation
dependent.

See Also:

define-method-combination

2—-62 Common Lisp Object System Specification

method-qualifiers

Standard Generic Function

Purpose:

The generic function method-qualifiers returns a list of the qualifiers of the given method.

Syntax:
method-qualifiers method
Method Signatures:
method-qualifiers (method standard-method)
Arguments:
The method argument is a method object.
Values:
A list of the qualifiers of the given method is returned.

Examples:

(setq methods (remove-duplicates methods
:from-end t
:key #’method-qualifiers
itest #’equal))

See Also:

define-method-combination

[Generic Function)

[Primary Method)

Functions in the Programmer Interface 2—63

next-method-p Function

Purpose:

The locally defined function next-method-p can be used within the body of a method defined
by a method-defining form to determine whether a next method exists.

Syntax:

next-method-p [Function)
Arguments:

The function next-method-p takes no arguments.
Values:

The function next-method-p returns true or false.
Remarks:

Like call-next-method, the function next-method-p has lexical scope and indefinite extent.
See Also:

call-next-method

2—-64 Common Lisp Object System Specification

no- applicable- method Standard Generic Function

Purpose:

The generic function no-applicable-method is called when a generic function of the class
standard-generic-function is invoked and no method on that generic function is applicable.
The default method signals an error.

The generic function no-applicable-method is not intended to be called by programmers.
Programmers may write methods for it.

Syntax:
no-applicable-method generic-function &rest function-arguments [Generic Function]
Method Signatures:
no-applicable-method (generic-function t) [Primary Method)
&rest function-arguments
Arguments:

The generic-function argument of no-applicable-method is the generic function object on
which no applicable method was found.

The function-arguments argument is a list of the arguments to that generic function.

Functions in the Programmer Interface 2—65

no-next-method Standard Generic Function

Purpose:

Syntax:

The generic function no-next-method is called by call-next-method when there is no next
method. The system-supplied method on no-next-method signals an error.

The generic function no-next-method is not intended to be called by programmers. Program-
mers may write methods for it.

no-next-method generic-function method &rest args [Generic Function]

Method Signatures:

no-next-method (generic-function standard-generic-function) [Primary Method)
(method standard-method)
&rest args
Arguments:

The generic-function argument is the generic function object to which the method that is the
second argument belongs.

The method argument is the method that contained the call to call-next-method for which
there is no next method.

The args argument is a list of the arguments to call-next-method.

See Also:

call-next-method

2-66 Common Lisp Object System Specification

print-object Standard Generic Function

Purpose:

The generic function print-object writes the printed representation of an object to a stream.
The function print-object is called by the print system; it should not be called by the user.

Each implementation is required to provide a method on the class standard-object and methods
on enough other classes so as to ensure that there is always an applicable method. Implemen-
tations are free to add methods for other classes. Users can write methods for print-object for
their own classes if they do not wish to inherit an implementation-supplied method.

Syntax:

print-object object stream [Generic Function]
Method Signatures:

print-object (object standard-object) stream [Primary Method)
Arguments:

The first argument is any Lisp object. The second argument is a stream; it cannot be t or nil.
Values:

The function print-object returns its first argument, the object.
Remarks:

Methods on print-object must obey the print control special variables described in Common
Lisp: The Language. The specific details are the following:

e Each method must implement *print-escapex.

e The *print-pretty= control variable can be ignored by most methods other than the one for
lists.

e The *print-circlex control variable is handled by the printer and can be ignored by meth-
ods.

e The printer takes care of *print-level* automatically, provided that each method handles
exactly one level of structure and calls write (or an equivalent function) recursively if there
are more structural levels. The printer’s decision of whether an object has components (and
therefore should not be printed when the printing depth is not less than xprint-levelx) is
implementation dependent. In some implementations its print-object method is not called;
in others the method is called, and the determination that the object has components is

Functions in the Programmer Interface 2—67

print-object

based on what it tries to write to the stream.

e Methods that produce output of indefinite length must obey *print-lengths*, but most
methods other than the one for lists can ignore it.

e The *print-base*, xprint-radix*, *print-casex*, *print-gensyms, and *print-array*
control variables apply to specific types of objects and are handled by the methods for those
objects.

If these rules are not obeyed, the results are undefined.

In general, the printer and the print-object methods should not rebind the print control vari-
ables as they operate recursively through the structure, but this is implementation dependent.

In some implementations the stream argument passed to a print-object method is not the
original stream, but is an intermediate stream that implements part of the printer. Methods
should therefore not depend on the identity of this stream.

All of the existing printing functions (write, prinl, print, princ, pprint, write-to-string,
prinl-to-string, princ-to-string, the “S and ~A format operations, and the "B, "D, "E,

“F, "G, "8, "0, "R, and ~X format operations when they encounter a non-numeric value) are
required to be changed to go through the print-object generic function. Each implementation
is required to replace its former implementation of printing with one or more print-object
methods. Exactly which classes have methods for print-object is not specified; it would be valid
for an implementation to have one default method that is inherited by all system-defined classes.

2—-68 Common Lisp Object System Specification

reinitialize-instance Standard Generic Function

Purpose:

The generic function reinitialize-instance can be used to change the values of local slots accord-
ing to initialization arguments. This generic function is called by the Meta-Object Protocol. It
can also be called by users.

The system-supplied primary method for reinitialize-instance checks the validity of initializa-
tion arguments and signals an error if an initialization argument is supplied that is not declared
as valid. The method then calls the generic function shared-initialize with the following argu-
ments: the instance, nil (which means no slots should be initialized according to their initforms),
and the initialization arguments it received.

Syntax:

reinitialize-instance instance &rest initargs [Generic Function)
Method Signatures:

reinitialize-instance (instance standard-object) &rest initargs [Primary Method)
Arguments:

The instance argument is the object to be initialized.

The initargs argument consists of alternating initialization argument names and values.
Values:

The modified instance is returned as the result.
Remarks:

Initialization arguments are declared as valid by using the :initarg option to defclass, or by
defining methods for reinitialize-instance or shared-initialize. The keyword name of each
keyword parameter specifier in the lambda-list of any method defined on reinitialize-instance
or shared-initialize is declared as a valid initialization argument name for all classes for which
that method is applicable.

See Also:
“Reinitializing an Instance”
“Rules for Initialization Arguments”

“Declaring the Validity of Initialization Arguments”

Functions in the Programmer Interface 2—69

reinitialize-instance

initialize-instance

shared-initialize
update-instance-for-redefined-class
update-instance-for-different-class
slot-boundp

slot-makunbound

2-70 Common Lisp Object System Specification

remove-method Standard Generic Function

Purpose:

The generic function remove-method removes a method from a generic function. It destruc-
tively modifies the specified generic function and returns the modified generic function as its
result.

Syntax:
remove-method generic-function method [Generic Function]
Method Signatures:
remove-method (generic-function standard-generic-function) [Primary Method)
method
Arguments:
The generic-function argument is a generic function object.

The method argument is a method object. The function remove-method does not signal an
error if the method is not one of the methods on the generic function.

Values:

The modified generic function is returned. The result of remove-method is eq to the generic-
function argument.

See Also:
find-method

Functions in the Programmer Interface 2-71

shared-initialize Standard Generic Function

Purpose:

Syntax:

The generic function shared-initialize is used to fill the slots of an instance using initialization
arguments and :initform forms. It is called when an instance is created, when an instance is
re-initialized, when an instance is updated to conform to a redefined class, and when an instance
is updated to conform to a different class. The generic function shared-initialize is called by
the system-supplied primary method for initialize-instance, reinitialize-instance, update-
instance-for-redefined-class, and update-instance-for-different-class.

The generic function shared-initialize takes the following arguments: the instance to be ini-
tialized, a specification of a set of names of slots accessible in that instance, and any number of
initialization arguments. The arguments after the first two must form an initialization argument
list. The system-supplied primary method on shared-initialize initializes the slots with values
according to the initialization arguments and specified :initform forms. The second argument
indicates which slots should be initialized according to their :initform forms if no initialization
arguments are provided for those slots.

The system-supplied primary method behaves as follows, regardless of whether the slots are local
or shared:

e If an initialization argument in the initialization argument list specifies a value for that slot,
that value is stored into the slot, even if a value has already been stored in the slot before the
method is run.

e Any slots indicated by the second argument that are still unbound at this point are initialized
according to their :initform forms. For any such slot that has an :initform form, that form
is evaluated in the lexical environment of its defining defclass form and the result is stored
into the slot. For example, if a :before method stores a value in the slot, the :initform form
will not be used to supply a value for the slot.

e The rules mentioned in the section “Rules for Initialization Arguments” are obeyed.

shared-initialize instance slot-names &rest initargs [Generic Function]

Method Signatures:

shared-initialize (instance standard-object) slot-names &rest initargs [Primary Method)

Arguments:

The instance argument is the object to be initialized.

2—72 Common Lisp Object System Specification

shared-initialize

Values:

The slots-names argument specifies the slots that are to be initialized according to their :init-
form forms if no initialization arguments apply. It is supplied in one of three forms as follows:

e It can be list of slot names, which specifies the set of those slot names.
e It can be nil, which specifies the empty set of slot names.
e It can be the symbol t, which specifies the set of all of the slots.

The initargs argument consists of alternating initialization argument names and values.

The modified instance is returned as the result.

Remarks:

Initialization arguments are declared as valid by using the :initarg option to defclass, or by
defining methods for shared-initialize. The keyword name of each keyword parameter specifier
in the lambda-list of any method defined on shared-initialize is declared as a valid initialization
argument name for all classes for which that method is applicable.

Implementations are permitted to optimize :initform forms that neither produce nor depend on
side effects, by evaluating these forms and storing them into slots before running any initialize-
instance methods, rather than by handling them in the primary initialize-instance method.
(This optimization might be implemented by having the allocate-instance method copy a
prototype instance.)

Implementations are permitted to optimize default initial value forms for initialization arguments
associated with slots by not actually creating the complete initialization argument list when the
only method that would receive the complete list is the method on standard-object. In this case
default initial value forms can be treated like :initform forms. This optimization has no visible
effects other than a performance improvement.

See Also:

“Object Creation and Initialization”

“Rules for Initialization Arguments”

“Declaring the Validity of Initialization Arguments”
initialize-instance

reinitialize-instance

update-instance-for-redefined-class

update-instance-for-different-class

Functions in the Programmer Interface 2—73

shared-initialize

slot-boundp

slot-makunbound

2-74 Common Lisp Object System Specification

slot-boundp Function

Purpose:
The function slot-boundp tests whether a specific slot in an instance is bound.
Syntax:
slot-boundp instance slot-name [Function)
Arguments:
The arguments are the instance and the name of the slot.
Values:
The function slot-boundp returns true or false.
Remarks:

The function slot-boundp allows for writing :after methods on initialize-instance in order to
initialize only those slots that have not already been bound.

If no slot of the given name exists in the instance, slot-missing is called as follows:
(slot-missing (class-of instance) instance slot-name ’slot-boundp)

The function slot-boundp is implemented using slot-boundp-using-class.

See Also:

slot-missing

Functions in the Programmer Interface 2-75

slot-exists-p Function

Purpose:

The function slot-exists-p tests whether the specified object has a slot of the given name.
Syntax:

slot-exists-p object slot-name [Function)
Arguments:

The object argument is any object. The slot-name argument is a symbol.
Values:

The function slot-exists-p returns true or false.
Remarks:

The function slot-exists-p is implemented using slot-exists-p-using-class.

2-76 Common Lisp Object System Specification

slot-makunbound Function

Purpose:
The function slot-makunbound restores a slot in an instance to the unbound state.
Syntax:
slot-makunbound instance slot-name [Function)
Arguments:
The arguments to slot-makunbound are the instance and the name of the slot.
Values:
The instance is returned as the result.
Remarks:

If no slot of the given name exists in the instance, slot-missing is called as follows:
(slot-missing (class-of instance) instance slot-name ’slot-makunbound)

The function slot-makunbound is implemented using slot-makunbound-using-class.

See Also:

slot-missing

Functions in the Programmer Interface 2-77

SlOt-miSSil’lg Standard Generic Function

Purpose:

The generic function slot-missing is invoked when an attempt is made to access a slot in an
object whose metaclass is standard-class and the name of the slot provided is not a name of a
slot in that class. The default method signals an error.

The generic function slot-missing is not intended to be called by programmers. Programmers
may write methods for it.

Syntax:
slot-missing class object slot-name operation &optional new-value [Generic Function]
Method Signatures:

slot-missing (class t) object slot-name [Primary Method)
operation &optional new-value

Arguments:

The required arguments to slot-missing are the class of the object that is being accessed, the
object, the slot name, and a symbol that indicates the operation that caused slot-missing to be
invoked. The optional argument to slot-missing is used when the operation is attempting to set
the value of the slot.

Values:

If a method written for slot-missing returns values, these values get returned as the values of the
original function invocation.

Remarks:

The generic function slot-missing may be called during evaluation of slot-value, (setf slot-
value), slot-boundp, and slot-makunbound. For each of these operations the corresponding
symbol for the operation argument is slot-value, setf, slot-boundp, and slot-makunbound
respectively.

The set of arguments (including the class of the instance) facilitates defining methods on the
metaclass for slot-missing.

2-78 Common Lisp Object System Specification

slot-unbound Standard Generic Function

Purpose:

The generic function slot-unbound is called when an unbound slot is read in an instance whose
metaclass is standard-class. The default method signals an error.

The generic function slot-unbound is not intended to be called by programmers. Programmers
may write methods for it. The function slot-unbound is called only by the function slot-value-
using-class and thus indirectly by slot-value.

Syntax:

slot-unbound class instance slot-name [Generic Function]
Method Signatures:

slot-unbound (class t) instance slot-name [Primary Method)

Arguments:

The arguments to slot-unbound are the class of the instance whose slot was accessed, the
instance itself, and the name of the slot.

Values:

If a method written for slot-unbound returns values, these values get returned as the values of
the original function invocation.

Remarks:

An unbound slot may occur if no :initform form was specified for the slot and the slot value has
not been set, or if slot-makunbound has been called on the slot.

See Also:

slot-makunbound

Functions in the Programmer Interface 2—79

slot-value Function

Purpose:

The function slot-value returns the value contained in the slot slot-name of the given object. If
there is no slot with that name, slot-missing is called. If the slot is unbound, slot-unbound is
called.

The macro setf can be used with slot-value to change the value of a slot.
Syntax:
slot-value object slot-name [Function)
Arguments:
The arguments are the object and the name of the given slot.
Values:
The result is the value contained in the given slot.
Remarks:

If an attempt is made to read a slot and no slot of the given name exists in the instance, slot-
missing is called as follows: (slot-missing (class-of instance) instance slot-name ’slot-value)

If an attempt is made to write a slot and no slot of the given name exists in the instance, slot-
missing is called as follows: (slot-missing (class-of instance) instance slot-name ’setf
new-value)

The function slot-value is implemented using slot-value-using-class.
Implementations may optimize slot-value by compiling it inline.

See Also:
slot-missing

slot-unbound

2—-80 Common Lisp Object System Specification

symbol-macrolet Macro

Purpose:

The macro symbol-macrolet provides a mechanism for the substitution of forms for variable
names within a lexical scope.

Syntax:
symbol-macrolet ((symbol expansion)*) &body body [Macro]
Arguments:

The symbol argument specifies the symbol with which the form specified by the expansion argu-
ment is to be associated.

Values:
The result returned is that obtained by executing the forms specified by the body argument.

Examples:

(symbol-macrolet ((x ’foo0))
(list x (let ((x ’bar)) x)))

;33 The result is (foo bar), not (foo foo).
;55 The expansion is (list ’foo (let ((x ’bar)) x)),
;53 not (list ’foo (let ((’foo ’bar)) ’foo)).

(symbol-macrolet ((x (1+ x)))
(print x))

;5; The expansion is (print (1+ x)),
;55 not (print (1+ (1+ (1+

Remarks:
The lexical scope of symbol-macrolet is body; it does not include expansion.

Each reference to symbol as a variable within the lexical scope of symbol-macrolet is replaced
by expansion (not the result of evaluating expansion).

The use of symbol-macrolet can be shadowed by let. In other words, symbol-macrolet only
substitutes for occurrences of symbol that would be in the scope of a lexical binding of symbol
surrounding the body.

Functions in the Programmer Interface 2—81

symbol-macrolet

The macro symbol-macrolet is the basic mechanism that is used to implement with-slots.

When the body of the symbol-macrolet form is expanded, any use of setq to set the value of
one of the specified variables is converted to a use of setf.

See Also:

with-slots

2—82 Common Lisp Object System Specification

update-instance-for-different-class Standard Generic Function

Purpose:

Syntax:

The generic function update-instance-for-different-class is not intended to be called by
programmers. Programmers may write methods for it. The function update-instance-for-
different-class is called only by the function change-class.

The system-supplied primary method on update-instance-for-different-class checks the
validity of initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid. This method then initializes slots with values according to the
initialization arguments, and initializes the newly added slots with values according to their
:initform forms. It does this by calling the generic function shared-initialize with the following
arguments: the instance, a list of names of the newly added slots, and the initialization arguments
it received. Newly added slots are those local slots for which no slot of the same name exists in
the previous class.

Methods for update-instance-for-different-class can be defined to specify actions to be taken
when an instance is updated. If only :after methods for update-instance-for-different-class
are defined, they will be run after the system-supplied primary method for initialization and
therefore will not interfere with the default behavior of update-instance-for-different-class.

update-instance-for-different-class previous current &rest initargs [Generic Function)

Method Signatures:

update-instance-for-different-class (previous standard-object) [Primary Method)
(current standard-object)
&rest initargs

Arguments:

The arguments to update-instance-for-different-class are computed by change-class. When
change-class is invoked on an instance, a copy of that instance is made; change-class then
destructively alters the original instance. The first argument to update-instance-for-different-
class, previous, is that copy; it holds the old slot values temporarily. This argument has dy-
namic extent within change-class; if it is referenced in any way once update-instance-for-
different-class returns, the results are undefined. The second argument to update-instance-
for-different-class, current, is the altered original instance.

Functions in the Programmer Interface 2—83

update-instance-for-different-class

The intended use of previous is to extract old slot values by using slot-value or with-slots or by
invoking a reader generic function, or to run other methods that were applicable to instances of
the original class.

The initargs argument consists of alternating initialization argument names and values.
Values:

The value returned by update-instance-for-different-class is ignored by change-class.
Examples:

See the example for the function change-class.

Remarks:

Initialization arguments are declared as valid by using the :initarg option to defclass, or by
defining methods for update-instance-for-different-class or shared-initialize. The keyword
name of each keyword parameter specifier in the lambda-list of any method defined on update-
instance-for-different-class or shared-initialize is declared as a valid initialization argument
name for all classes for which that method is applicable.

Methods on update-instance-for-different-class can be defined to initialize slots differently
from change-class. The default behavior of change-class is described in “Changing the Class of
an Instance.”

See Also:
“Changing the Class of an Instance”
“Rules for Initialization Arguments”
“Declaring the Validity of Initialization Arguments”
change-class

shared-initialize

2—84 Common Lisp Object System Specification

update-instance-for-redefined-class Standard Generic Function

Purpose:

The generic function update-instance-for-redefined-class is not intended to be called by
programmers. Programmers may write methods for it. The generic function update-instance-
for-redefined-class is called by the mechanism activated by make-instances-obsolete.

The system-supplied primary method on update-instance-for-different-class checks the
validity of initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid. This method then initializes slots with values according to the
initialization arguments, and initializes the newly added slots with values according to their
:initform forms. It does this by calling the generic function shared-initialize with the following
arguments: the instance, a list of names of the newly added slots, and the initialization arguments
it received. Newly added slots are those local slots for which no slot of the same name exists in
the old version of the class.

Syntax:

update-instance-for-redefined-class instance [Generic Function]
added-slots discarded-slots
property-list
&rest initargs

Method Signatures:

update-instance-for-redefined-class (instance standard-object) [Primary Method)
added-slots discarded-slots
property-list
&rest initargs

Arguments:

When make-instances-obsolete is invoked or when a class has been redefined and an instance
is being updated, a property list is created that captures the slot names and values of all the
discarded slots with values in the original instance. The structure of the instance is transformed
so that it conforms to the current class definition. The arguments to update-instance-for-
redefined-class are this transformed instance, a list of the names of the new slots added to the
instance, a list of the names of the old slots discarded from the instance, and the property list
containing the slot names and values for slots that were discarded and had values. Included in
this list of discarded slots are slots that were local in the old class and are shared in the new
class.

The initargs argument consists of alternating initialization argument names and values.

Functions in the Programmer Interface 2—85

update-instance-for-redefined-class

Values:
The value returned by update-instance-for-redefined-class is ignored.

Remarks:
Initialization arguments are declared as valid by using the :initarg option to defclass, or by
defining methods for update-instance-for-redefined-class or shared-initialize. The keyword
name of each keyword parameter specifier in the lambda-list of any method defined on update-
instance-for-redefined-class or shared-initialize is declared as a valid initialization argument
name for all classes for which that method is applicable.

Examples:

(defclass position () ())

(defclass x-y-position (position)
((x :initform O :accessor position-x)
(y :initform O :accessor position-y)))

;55 It turns out polar coordinates are used more than Cartesian
;53 coordinates, so the representation is altered and some new
;33 accessor methods are added.

(defmethod update-instance-for-redefined-class :before
((pos x-y-position) added deleted plist &key)
;5 Transform the x-y coordinates to polar coordinates
;; and store into the new slots.
(let ((x (getf plist ’x))
(y (getf plist ’y)))
(setf (position-rho pos) (sqrt (+ (* x x) (* y y)))
(position-theta pos) (atan y x))))

(defclass x-y-position (position)
((rho :initform O :accessor position-rho)

(theta :initform O :accessor position-theta)))

;55 All instances of the old x-y-position class will be updated
;55 automatically.

;55 The new representation is given the look and feel of the old one.

(defmethod position-x ((pos x-y-position))
(with-slots (rho theta) pos (* rho (cos theta))))

2—-86 Common Lisp Object System Specification

update-instance-for-redefined-class

(defmethod (setf position-x) (new-x (pos x-y-position))
(with-slots (rho theta) pos
(let ((y (position-y pos)))
(setq rho (sqrt (+ (* new-x new-x) (x y y)))
theta (atan y new-x))
new-x)))

(defmethod position-y ((pos x-y-position))
(with-slots (rho theta) pos (* rho (sin theta))))

(defmethod (setf position-y) (new-y (pos x-y-position))
(with-slots (rho theta) pos
(let ((x (position-x pos)))
(setq rho (sqrt (+ (* x x) (* new-y new-y)))
theta (atan new-y x))
new-y)))

See Also:
“Redefining Classes”
“Rules for Initialization Arguments”
“Declaring the Validity of Initialization Arguments”
make-instances-obsolete

shared-initialize

Functions in the Programmer Interface 2—87

with-accessors Macro

Purpose:

The macro with-accessors creates a lexical environment in which specified slots are lexically
available through their accessors as if they were variables. The macro with-accessors invokes
the appropriate accessors to access the specified slots. Both setf and setq can be used to set the
value of the slot.

Syntax:
with-accessors ({slot-entry}*) instance-form &body body [Macro]
slot-entry::= (variable-name accessor-name)

Values:

The result returned is that obtained by executing the forms specified by the body argument.

Examples:
(with-accessors ((x position-x)
(y position-y))

pl
(setq x y))

Remarks:

A with-accessors expression of the form:
(with-accessors (slot-entry, ... slot-entry,) instance form, ... form,)

expands into the equivalent of

(let ((in instance))
(symbol-macrolet (@ ...Q,) form, ...formy))

where @); is

(variable-name; (accessor-name; in))

2—88 Common Lisp Object System Specification

with-accessors

See Also:
with-slots

symbol-macrolet

Functions in the Programmer Interface 2—89

with-added-methods Special Form

Purpose:

Syntax:

The with-added-methods special form produces new generic functions and establishes new
lexical function definition bindings. Each generic function is created by adding the set of methods
specified by its method definitions to a copy of the lexically visible generic function of the same
name and its methods. If such a generic function does not already exist, a new generic function is
created; this generic function has lexical scope.

The special form with-added-methods is used to define functions whose names are meaningful
only locally and to execute a series of forms with these function definition bindings.

The names of functions defined by with-added-methods have lexical scope; they retain their
local definitions only within the body of the with-added-methods construct. Any references
within the body of the with-added-methods construct to functions whose names are the
same as those defined within the with-added-methods form are thus references to the local
functions instead of to any global functions of the same names. The scope of these generic
function definition bindings includes the method bodies themselves as well as the body of the
with-added-methods construct.

with-added-methods (function-specifier lambda-list [Special Form]
[l option | method-description™])
{form}*

function-specifier::= {symbol | (setf symbol)}

option::= (:argument-precedence-order {parameter—name}+) |
(declare {declaration}+) |
(:documentation string) |
(:method-combination symbol {arg}*) |
(:generic-function-class class-name) |
(:method-class class-name)

method-description::= (:method {method-qualifier }* specialized-lambda-list
{declaration | documentation}* {form}*)

2-90 Common Lisp Object System Specification

with-added-methods

Arguments:

Values:

The function-specifier, option, method-qualifier, and specialized-lambda-list arguments are the
same as for defgeneric.

The body of each method is enclosed in an implicit block. If function-specifier is a symbol, this
block bears the same name as the generic function. If function-specifier is a list of the form (setf
symbol), the name of the block is symbol.

The result returned by with-added-methods is the value or values returned by the last form
executed. If no forms are specified, with-added-methods returns nil.

Remarks:

If a generic function with the given name already exists, the lambda-list specified in the with-
added-methods form must be congruent with the lambda-lists of all existing methods on that
function as well as with the lambda-lists of all methods defined by the with-added-methods
form; otherwise an error is signaled.

If function-specifier specifies an existing generic function that has a different value for any of
the following option arguments, the copy of that generic function is modified to have the new
value: :argument-precedence-order, declare, :documentation, :generic-function-class,
:method-combination.

If function-specifier specifies an existing generic function that has a different value for the
:method-class option argument, that value is changed in the copy of that generic function,
but any methods copied from the existing generic function are not changed.

If a function of the given name already exists, that function is copied into the default method for
a generic function of the given name. Note that this behavior differs from that of defgeneric.

If a macro or special form of the given name already exists, an error is signaled.

If there is no existing generic function, the option arguments have the same default values as the
option arguments to defgeneric.

See Also:

generic-labels
generic-flet
defmethod
defgeneric

ensure-generic-function

Functions in the Programmer Interface 2-91

with-slots Macro

Purpose:

The macro with-slots creates a lexical context for referring to specified slots as though they were
variables. Within such a context the value of the slot can be specified by using its slot name, as if
it were a lexically bound variable. Both setf and setq can be used to set the value of the slot.

The macro with-slots translates an appearance of the slot name as a variable into a call to
slot-value.

Syntax:
with-slots ({slot-entry}*) instance-form &body body [Macro]

slot-entry::= slot-name | (variable-name slot-name)

Values:
The result returned is that obtained by executing the forms specified by the body argument.

Examples:

(with-slots (x y) position-1
(sqrt (+ (* x x) (* y y))))

(with-slots ((x1 x) (yl1 y)) position-1
(with-slots ((x2 x) (y2 y)) position-2
(psetf x1 x2
y1 y2))))

(with-slots (x y) position
(setq x (1+ x)
y (1+ y)))

Remarks:

A with-slots expression of the form:
(with-slots (slot-entry, ... slot-entry,) instance form, ... formy,)

expands into the equivalent of

2-92 Common Lisp Object System Specification

with-slots

(let ((in instance))
(symbol-macrolet (@ ... Q,) form, ... formy))

where @); is
(slot-entry; (slot-value in 'slot-entry;))
if slot-entry; is a symbol and is
(variable-name; (slot-value in 'slot-name;))

it slot-entry, is of the form
(variable-name; slot-name;)
See Also:

with-accessors

symbol-macrolet

Functions in the Programmer Interface 2—93

2-94 Common Lisp Object System Specification

