

Onward!
A Track at OOPSLA 2002

Seattle, Washington
November 6–8, 2002

The Onward! Track contains technical and philosophical
papers describing new paradigms or metaphors in
computing, new thinking about objects, new
framings of computational problems or systems,
and new technologies. Papers in the Onward!
Track aren’t aimed at advancing the state of the
art—they’re aimed, instead, at altering or
redefining the art by proposing a leap for-
ward—or sideways—for computing.

Chair

Richard P. Gabriel
Sun Microsystems, Inc.

Program Committee

Geoff Cohen
Cap Gemini Ernst & Young

Pierre Cointe
L'Ecole des Mines de Nantes

Dave Thomas
Bedarra Corporation and Carleton University

Dream Songs Press 2002

Authors have retained all rights to their
respective papers.

Adjunct material copyright Richard P. Gabriel.

The Onward! Program

Wednesday, 6 November 2002 13:30–15:00
Convention Center—Ballroom 6D

New Models for Software I

This session sets the stage for the Onward! track by presenting two extreme points in the discussion on how
to move forward with software: Autonomic computing, at one end, is being both researched and designed
into existing systems today, while the metaphor of magic is intended to stimulate people to think far beyond
the walls of the box and the academy.

A Vision of Autonomic Computing

Jeffrey O. Kephart
IBM
kephart@us.ibm.com

Autonomic Computing is a new approach to coping with the rapidly growing complexity of operating and
integrating computing systems. This paper elaborates on the vision of autonomic, or self-managing comput-
ing. The goal is not to present a well-articulated architecture. Instead, the author speculates about general
architectural features that might typify autonomic computing systems of the future, and uses this as a basis
for discussing several challenging scientific and engineering issues that need to be addressed in order to real-
ize the vision of autonomic, or self-managing computing.

Magic

Dave West
New Mexico Highlands University
dwest@cs.nmhu.edu

Assume an obverse version of Clarke's insight: “If a technology is not magical, it is insufficiently advanced.”
Computing and software development are clearly not magical even though some applications, especially in
cinema special effects, certainly convey magical impressions. The central question of this essay—can we use
magic as a metaphor to re-evaluate and redefine the theory and practice of computing? Or, stated slightly dif-
ferently, can magic provide a metaphor for opening a new frontier in the investigation and solution of the core
problems confronted by software developers and computing professionals in today's world?

Wednesday, 6 November 2002 15:30–17:00
Convention Center—Ballroom 6D

Panel: Biologically Inspired Software

Steven Hofmeyr
Company 51
steve@company51.com

Jeffrey O. Kephart
IBM
kephart@us.ibm.com

Dave West
New Mexico Highlands University
dwest@cs.nmhu.edu

Both biologists and computing researchers need metaphors and concepts to understand how complex, large
systems work, even if that understanding is merely statistical or otherwise non-predictive. This panel explores
the question of furthering computing and organizing computations by looking at the concepts found in biol-
ogy, used by biologists, and required by biologists.

Wednesday, 6 November 2002 19:30–21:00
Convention Center—Exhibit Hall 4B

Keynote: What’s Next?

Jerry Michalski
Sociate

Technology is not neutral. It reflects the objectives and mental models of those who design it, the business
imperatives of the times and the interactions of those who use it. By tracing the history behind some of
today's critical technologies, then describing the dynamics between the major forces in the business market
and the market of ideas, Jerry will tackle questions such as:

• Why does it seem that innovation is at a standstill, despite much emphasis on corporate innovation?

• What role do our assumptions about capitalism, intellectual property, assets and scarcity have in our con-
tinuing evolution?

• How will programming quickly/slowly, in the large/in the small, with closed/open models and with
highly structured/unstructured, organic approaches play out?

• Where should technology developers place their energies?

Thursday, 7 November 2002 10:30–12:00
Convention Center—Ballroom 6D

New Models for Software II

This session looks at new ways of thinking about software and how to build it, through the lenses of post-
modernism and just-in-time manufacturing processes. Both these papers are concerned with how people deal
with software, not simply with its technologies.

Notes on Postmodern Programming

James Noble
Victoria University of Wellington, New Zealand
kjx@mcs.vuw.ac.nz

Robert Biddle
Victoria University of Wellington, New Zealand
robert@mcs.vuw.ac.nz

What is postmodern computer science? How is programming related to computer science? The authors have
written, “Let us create a new guild of programmers without the class-distinctions that raise an arrogant bar-
rier between programmers and computer scientists! Let us desire, conceive, and create the new program of
the future together. It will combine design, user-interfaces, and programming in a single form, and will one
day rise towards the heavens from the hands of a million workers as the crystalline symbol of a new and com-
ing faith.”

Principles of Lean Thinking

Mary Poppendieck
Poppendieck.LLC
mary@poppendieck.com

In the 1980's, a massive paradigm shift hit the factories throughout the US and Europe. Mass production
and scientific management techniques from the early 1900's were questioned as Japanese manufacturing com-
panies demonstrated that “Just-in-Time” was a better paradigm. The widely adopted manufacturing concepts
came to be known as “Lean Production”. When appropriately applied, Lean Thinking is a well-understood
and well-tested platform upon which to build agile software development practices.

Thursday, 7 November 2002 13:30–15:00
Convention Center—Ballroom 6D

New Programming Constructs

This session presents two practical ideas derived from challenging common assumptions. The first is the
result of questioning the assumption that a server is necessary to coordinate cooperating networks, and the
second questions a commonsense design rule.

Many-to-Many Invocation

Alan Kaminsky
Rochester Institute of Technology
ark@cs.rit.edu

Hans-Peter Bischof
Rochester Institute of Technology
hpb@cs.rit.edu

Many-to-Many Invocation (M2MI) is a new paradigm for building collaborative systems that run in wireless
proximal ad hoc networks of fixed and mobile computing devices. M2MI is useful for building a broad range
of systems, including multiuser applications (conversations, groupware, multiplayer games); systems involv-
ing networked devices (printers, cameras, sensors); and collaborative middleware systems.

Problematic Encapsulation in High-Risk Systems

Daniel Dvorak
Jet Propulsion Laboratory, California Institute of Technology
daniel.dvorak@jpl.nasa.gov

One of the most common metaphors in OOAD clashes with the physics of the real world. Moreover, this
clash isn’t obvious in everyday systems—it only becomes obvious in a category of systems called “high risk
systems.” The metaphor is that of designing an object model that is isomorphic to the hardware aggregation
hierarchy, i.e., decomposition by subsystem and device, with encapsulated state. Hardware units seem like
obvious candidates for objects; the paper shows how this ‘obvious’ metaphor breaks down and can lead to a
messy design. The paper uses examples from NASA space missions involving control of spacecraft and Mars
rovers as examples of high-risk systems.

Thursday, 8 November 2002 12:00–13:00
Convention Center—Rooms 602–604

Panel: New Programming Constructs Beyond Inheritance, Patterns, and Notation:
What's left?

Geoff Cohen
Cap Gemini Ernst & Young Center for Business Innovation
geoff.cohen@cgey.com

William R. Cook
Allegis Corporation
william@allegis.com

Robert Filman
Ames Research Center, NASA
rfilman@mail.arc.nasa.gov

There hasn’t been much beyond incremental improvements to programming languages for about the last 10
years. We see implementation advances, variants on encapsulation and composition, notation, process, pat-
terns, and a steady diet of types, types, and more types. This panel tries to uncover what we haven’t thought
of yet.

The Onward! Papers

A Vision of Autonomic Computing

Jeffrey O. Kephart
IBM Research

Yorktown Heights, NY 10598
kephart@us.ibm.com

October 29, 2002

Abstract
In October, 2001, IBM released a manifesto [1] that defined autonomic com-

puting, a new approach to coping with the rapidly growing complexity of inte-
grating, configuring and operating computing systems. This article elaborates
further on IBM’s vision of autonomic computing. We speculate about general
architectural features that might typify autonomic, or self-managing, systems
of the future, and use this as a basis for discussing several challenging scientific
and engineering issues that need to be addressed in order to realize this vision.
Our goal is to motivate the academic and industrial research communities to
address these fundamental problems.

1 Introduction

On March 8, 2001, Paul Horn, Senior Vice President of IBM Research, announced
IBM’s commitment to autonomic computing—a fundamentally new approach to cop-
ing with the rapidly growing complexity of operating and integrating computing sys-
tems [2]. This was soon followed in April of that year by the announcement of Project
eLiza, an initiative to build self-managing capabilities into IBM supercomputers and
mainframes. Then, on October 15, 2001, IBM released a manifesto that justified
the need for autonomic computing, and described in broad terms several characteris-
tics that autonomic computing systems of the future will possess [1]. The manifesto
observed that the main obstacle to further progress in the information technology
industry is not a slowdown in Moore’s law. Rather, it is the inexorability of Moore’s
law that has led us to the verge of a software complexity crisis. Over the last few
decades, programmers have fully exploited a four- to six-orders-of-magnitude increase
in computational power, producing ever more sophisticated and functional software
applications and environments—some weighing in at tens of millions of lines of code,
and requiring skilled I/T professionals to install, configure, tune, and maintain them.

But the difficulty of managing today’s computing systems goes well beyond the
administration of individual software environments. The need to integrate several het-
erogeneous environments into corporate-wide computing systems introduces a whole

1

new level of complexity. With the rapid growth of the Internet and electronic com-
merce, interconnectedness is now being extended beyond company boundaries by
businesses seeking to integrate their business processes with those of their trading
partners, compounding the problems of system management and integration to the
point where it can take several person-years of effort. We appear to be approaching
the limits of human capability, yet the march towards increased interconnectivity and
integration appears to be rushing ahead unabated. Complexity could turn the dream
of pervasive computing, with its vision of trillions of computing devices connected to
the Internet [3], into a nightmare.

Past crises in software complexity have often been overcome by programming lan-
guage innovations, such as high-level languages, structured programming, and object-
oriented programming, that have extended the size and complexity of systems that
architects can design. But sole reliance on further innovations in programming meth-
ods will not get us though the present crisis. As systems are becoming ever more
interconnected with an increasingly diverse set of other systems and environments,
architects are less and less able to pre-plan intricate interactions among system com-
ponents, leaving such issues to be resolved at run time. This places on system ad-
ministrators and system integrators a burden that neither are capable of assuming,
due to a growing labor shortage1 and the growing gap between the inherent diffi-
culty of system management and the fixed limits of human capability. If we continue
on our present course, installing, configuring, optimizing, maintaining, and merging
massive, complex, and heterogeneous computing systems will become too difficult
for even the most skilled I/T workers, as will the task of making sufficiently quick,
decisive reponses to rapid streams of changing and conflicting demands.

We are left with only one option: to create computing systems that manage them-
selves. More specifically, we must create computing systems that configure, heal, op-
timize and protect themselves in accordance with high-level behavioral specifications
from human administrators.

IBM has coined the phrase autonomic computing to represent its vision of how
the world will rise to this new grand challenge. According to the Oxford English
Dictionary, there is no essential difference between the primary definitions of “au-
tonomic” and “autonomous.” Both words mean “self-governing.” But by choosing
autonomic, we are deliberately playing on the biological connotation. The autonomic
nervous system governs many of our involuntary functions, including our heart rate,
our respiratory rate, our blood’s sugar and oxygen levels, our body temperature, our
digestion, and the dilation of our pupils. It frees our conscious brain from the burden
of having to deal with these vital but lower-level functions.

The autonomic nervous system is emblematic of many complex natural systems
that are self-governing. In essence, life on Earth is a concentric series of levels of ag-
gregation, each level comprising many interacting, autonomous, self-governing com-
ponents, each of which may be composed of large numbers of interacting, autonomous,
self-governing components at the next level down. Consider the enormous range in

1The I/T labor shortage in the United States alone is expected to grow from roughly 450,000 in
2001 to 600,000 in 2002, despite the weak economy [4].

2

scale that starts with molecular machines within cells, then up to individual cells,
increasingly complex multi-cellular organisms, social groups such as hives and herds,
and beyond to the entire world ecosystem. In the case of humans, parallel branches
of this hierarchy extend beyond individuals to tribes, societies or markets, and be-
yond these to the entire world socio-economy. It is entirely within the purview of
autonomic computing to seek inspiration in social and economic systems as well.

Thus, in our use of the term autonomic computing, we are really expressing both
a desire to find new paradigms for achieving self-governance of massive and com-
plex computing systems and a belief that inspiration for those new paradigms can
be found in a variety of natural systems, of which the autonomic nervous system
is representative. We are encouraged by prior successes in applying biological and
economic principles to problems in computer science, including anti-virus [5] and
intrusion detection systems [6] patterned after the immune system, adaptive decen-
tralized network routing algorithms inspired by the social intelligence of ants [7], and
market-based distributed computation and problem solving approaches [8].

In its original manifesto, IBM set forth the grand challenge of creating self-
managing computing systems, and suggested that nature may hold the key to their
design. But noone believes that this challenge can be met by any one organization.
It will take a concerted, long-term, worldwide effort by researchers in diverse fields to
meet this challenge. The purpose of this article is to paint a somewhat more detailed
picture of what autonomic computing systems might look like, discuss in general
terms how they might function, and to use this as a basis for outlining some of the
major challenges that we face in designing them and understanding their behavior.
Specifically, in section 2 we elaborate on the notion of self-management, and present
some scenarios that illustrate the behavioral characteristics that will typify autonomic
computing systems. Then, in section 3, we discuss a set of architectural considera-
tions that serve as the basis for discussions in sections 4 and 5 of some fundamental
engineering and scientific issues that need to be tackled if we are to realize our vision
of autonomic computing.

2 Perspectives on Self-Management

The essence of autonomic computing systems is self-management. This section presents
a few different perspectives on the nature of self-management, beginning with present-
day views, then speculating about how the notion of self-management may evolve over
the coming years, and finally culminating in a series of vignettes that depicts how
people may experience autonomic systems several years hence.

Ever since the launch of its autonomic computing initiative, IBM has been cit-
ing four aspects of self-management: self-configuration, self-healing, self-optimization,
and self-protection. This view of self-managment naturally reflects a concern with spe-
cific present-day problems that make system administration particularly difficult and
burdensome. Let us expand a bit upon each of these facets of self-management:

• Self-configuration. Today, installing, configuring and integrating large com-
plex systems can be quite challenging, time-consuming, and error-prone—even

3

for experts. Large web sites or corporate data centers are typically a haphazard
accretion of servers, routers, databases, and other technologies on several dif-
ferent platforms from several different vendors, the full configuration and func-
tionality of which cannot be grasped by any single human mind. It can take
months of effort by teams of expert programmers to make significant changes to
such systems (such as installing a major e-commerce application such as SAP,
or merging two such systems into one).

Autonomic systems will be able to configure themselves automatically in accor-
dance with high-level policies (representing business-level objectives, for exam-
ple) that specify what is desired, not how it is to be accomplished. Adding a
new component will be like adding a new cell to the body, or a new individual
to a large population. When it is introduced to the system, it will incorporate
itself seamlessly (even if it is of a new type), and the rest of the system will
adapt to its presence automatically, to the mutual benefit of the system and
the new component.

• Self-optimization. Today, large complex middleware (e.g. WebSphere) or
database (e.g. Oracle or DB2) systems have dozens or even hundreds of tun-
able parameters. The performance of the system is strongly and nonlinearly
dependent on the settings of these parameters, and is also strongly dependent
on the usage conditions, so that an untuned system with parameters set to their
default values can perform very poorly. Retuning to keep up with changes in
usage patterns is very daunting, and therefore undertaken much less frequently
than would be optimal. The complexity of database tuning, for example, is
indicated by the number of books written on the topic—a quick survey of on-
line bookstores turns up 24 on Oracle database tuning alone [9, 10]. New books
have to be written continually, as the performance metrics and the tuning knobs
change with each release level of the same product. One author [11] has com-
mented that “If you write a technical book about Oracle, it will be out of date
by the time you’ve finished writing it, and within a year of publication it will
be 20% misleading, inappropriate, or just plain wrong.” The same holds for
any system of comparable complexity and functionality. As if this were not bad
enough, consider that such systems are often integrated with one another, and
therefore performance tuning of one large subsystem can have unanticipated
effects on the system as a whole.

Autonomic systems will continually seek ways to improve their operation, iden-
tifying and seizing opportunities to make themselves more efficient in terms of
performance or cost—just as muscles become stronger through exercise, and the
brain modifies its circuitry during the course of learning. They will achieve this
by monitoring, experimenting with, and tuning their own parameters, and by
making appropriate choices about insourcing or outsourcing functions.

• Self-healing and self-protection. Today, problem determination is a huge,
important, and difficult enterprise. IBM and other I/T vendors have large
departments devoted to identifying, tracing, and determining the root cause

4

of errors and failures in large, complex computing systems. The most serious
customer problems can sometimes take teams of programmers several weeks
to diagnose and fix, and sometimes the problem disappears mysteriously after
a sufficient amount of trial and error, without any satisfactory diagnosis ever
being made.

Autonomic computing systems will be self-healing—capable of detecting, diag-
nosing, and repairing localized problems arising from bugs or failures in software
or hardware. They will also be self-protecting in at least two different senses.
First, they will defend the system as a whole against large-scale, correlated
problems arising from malicious attacks or cascading failures that remain uncor-
rected by self-healing measures. Second, they will anticipate potential problems
(perhaps based on early reports from sensors or components) and take steps to
avoid them, or at least to mitigate their effect.2

In early versions of autonomic systems, these four aspects of self-management may
be treated as distinct from one another, with different product teams creating individ-
ual solutions that address each issue separately. Ultimately, however, we believe that
autonomic systems will be built in such a way that these aspects of self-management
will be emergent properties of a general autonomic architecture. As a consequence,
the present-day distinctions among these properties will begin to blur. For example,
self-protection, self-healing, and some aspects of self-optimization may well merge
into more encompassing notions of self-maintenance and robustness:

• Self-maintenance and robustness. In a manner analogous to that of their
biological namesakes, autonomic systems will maintain and adjust their opera-
tion in the face of changing workloads, demands and external conditions, and in
the face of hardware or software failures of innocent or malicious origin. Thus
self-healing and self-protection may simply be more extreme manifestations of
the system’s continual efforts to accommodate and adapt to change. Autonomic
systems will display another aspect of self-maintenance—proactively seeking to
upgrade their function by finding, verifying and applying the latest software
updates.

Another trend that we foresee is the gradual adoption of automation in autonomic
systems over time. The usual historical pattern of automation will be followed. At
first, automated functions will merely collect information, and help aggregate it in
ways that support decisions by human administrators. Later, they will serve in an
advisory capacity, suggesting possible courses of action, and offering to execute these
suggested actions at the press of a button. As the automation technologies improve,
and as humans’ faith in those technologies grows in tandem (perhaps lagging a year
or two behind), humans will entrust autonomic systems with making (and acting

2Somayaji and Forrest[12] have developed an interesting example of automated protection called
process homeostasis, in which abnormal Linux processes are delayed in proportion to the degree of
their abnormality. This technique slows down processes that are potentially damaging to the system,
helping it to cope with malicious attacks and propagating failures.

5

upon) more and more of the lower-level decisions. In effect, the roles will be reversed:
humans will now serve as advisors to the autonomic system, rendering relatively
less frequent and higher-level decisions that are carried out automatically via more
numerous, lower-level decisions and actions taken by the system itself. Over time,
human input will be ever more high-level and infrequent.

Thus far, we have focussed mainly on the benefits of autonomic computing to
system administrators. In order to portray how end users may experience self-
management in relatively sophisticated autonomic systems of the future, we conclude
this section with a series of vignettes. The vignettes focus on the higher levels of the
autonomic computing hierarchy—from departmental computing systems ranging up
to the automated e-business interactions among e-businesses—simply because this is
where people will experience autonomic systems most directly.

Now let us listen in on some conversations among co-workers during an ordinary
day at MachineCuisine.biz. . .

9am, by the coffee machine

Kyle: The new mainframe and a couple new servers arrived yesterday
afternoon, so I plugged them in.

Kayla: Ah, so that’s why the system seems a little faster this morning!

11am, in Tyler’s office

Tyler: I’m worried that I won’t be able to finish my Talking Toaster-
Roaster design by this afternoon. My Designer app has been really slow
this morning.

Taylor: Hmmm. . . I heard that Kyle plugged in some new machines last
night. Maybe some of the basic system services migrated to the new
hardware or upgraded themselves. I bet your app is just a little out
of sync right now—it probably needs to be reconfigured or upgraded or
something. Did you ask it what’s wrong?

Tyler: Oh yeah, let’s see. . .right—my app says it wants me to let it
upgrade one of its components and re-tune itself. Oh, look—here’s a
message it sent me last night asking for permission. Arrggh! Why didn’t
I read my e-mail?

Taylor: Geez—you’re still using e-mail notification? Whatever—just
click on OK.

Tyler: I know, Taylor—I’ve done this plenty of times before. Al. . .right,
it says it’s done. Let’s see. Yup, it’s back to normal—actually, it seems a
lot faster than before. Cool! This’ll put the Talking Toaster-Roaster back
on track!

Taylor: Great. Umm. . . why don’t you change the software upgrade
option in your personal profile from manual to automatic?

6

Tyler: I like to wait a couple days to make sure there aren’t problems.
Wasn’t there some kind of bug last year?

Taylor: Oh, you’re probably thinking of the one that happened when
they put in the new payroll system. That was no big deal. The automatic
regression tester discovered the discrepancy a few minutes after the new
system was installed, so the old system kicked back in immediately and ran
for a few hours until they fixed the bug. I’m surprised you remember. . .

Lunchtime, in the cafeteria

Britney: Does that burrito really need a whole bottle of tabasco sauce?

Whitney: It only looks like a burrito—it sure doesn’t taste like one. So
anyway. . .did you hear the good news? Our department is probably going
to meet its budget after all.

Britney: You’re kidding! I thought the earthquake blew our database
services costs.

Whitney: It did, but last week another provider opened a new 20-acre
database services facility in Canada. A bunch of our databases decided
to migrate there. Prices have already dropped below last month’s levels,
and we’re even seeing slightly better response times.

Britney: Terrific!

Whitney: Now if we could only get our chef to migrate to Canada. . .

3pm, by the coffee machine

Kyle: SAP announced a major upgrade this morning.

Kayla: Yeah, I heard. How’s it going?

Kyle: Oh, fine. They’ve run our acceptance suite and the bleeding edge
users have already been switched over. Everyone else will follow their
usual switchover profiles.

Kayla: [Snickering.] It’ll probably take Tyler an hour to press all those
OK buttons.

Kyle: Maybe just 10 minutes—his fingers have had lots of practice!

7pm, at a local restaurant

Tyler: My boss loves the Toaster-Roaster—thanks a lot for helping me
this morning.

Taylor: No problem—glad she likes it. Hey—did you hear that some
hackers broke into our eFrigerator Service today and deleted all of the
FridgeWidgets?

7

Tyler: Oh no—I bet our customers are pretty mad! And we’ll probably
have to pay Food Emporium and Safeway some pretty stiff service outage
penalties.

Taylor: Not really—they hardly even noticed. Our sentinels immedi-
ately noticed that the FridgeWidgets weren’t responding, so they told our
backup e-utility to handle the load for a few minutes while a fresh set
of FridgeWidgets looked around for a new e-utility provider. They found
one with a good reputation, and they negotiated a great price and service
guarantee.

Tyler: At least for the next couple weeks, until the new provider tries to
raise its prices on us!

Taylor: Don’t worry—our FridgeWidgets are pretty hard-nosed, and they
can always find a cheaper e-utility if they have to.

These vignettes3 illustrate several aspects of self-management that will be com-
mon to autonomic systems and their elements at all levels, from software or hard-
ware components to enterprises to electronic markets: self-upgrading, self-optimizing,
and self-healing applications, self-migrating databases, self-installing mainframes and
servers, and enterprises that automatically and seamlessly outsource their business
processes.

As we have stated, we believe that ultimately these common aspects of self-
management will emerge from a common set of architectural principles and concepts
that will apply broadly across many different types of applications, and at many
different levels, ranging from individual computational elements like disk drives to
entire automated businesses that sell information goods and services to one another.
The next section provides a broad outline of some basic architectural principles that
appear capable of providing a basis for autonomic systems.

3 Architectural Considerations

Thus far, we have painted a picture of how autonomic computing systems might
behave, but we have given only vague hints as to how they might be built. In this
section, we describe in the most generic terms some architectural thoughts and design
patterns that appear promising to us. Our primary purpose is not to define a detailed
architecture, but to provide the necessary framework for discussing what we believe
to be some of the most important and critical engineering and scientific challenges
that need to be addressed by the research community.

We do not believe that, in their ultimate form, autonomic computing systems will
be built from separately engineered self-configuration, self-healing, self-optimization,

3The vignettes are admittedly unrealistic, in the sense that the true measure of success for
autonomic systems will lie in their unremarkability: no one will comment upon or even know what
they are doing—just as today no one knows or cares how their phone calls get routed through the
telephone network.

8

and self-protection modules. (Early versions of autonomic systems may be built in
this way, however.) Instead, we expect these self-managing properties to be emergent,
i.e. they will arise naturally from myriad interactions among individual constituents
of the system that we refer to as autonomic elements. These autonomic elements will
contain resources and deliver services to humans and to other autonomic elements.
They will be responsible for managing themselves and their relationships with other
elements. But the self-management of the system will be qualitatively more than
the sum of the self-management of its parts—just as the social intelligence of an ant
colony is qualitatively more than the sum total intelligence of the individual ants.

Autonomic elements will typically consist of one or more functional units coupled
with a single managerial unit that controls and represents them. The managerial
and functional units may or may not be physically co-located. The functional unit is
essentially equivalent to what is found in ordinary non-autonomic systems, although
it may have to be adapted to enable the managerial unit to monitor and control
it. The functional unit could be a hardware resource, such as storage, CPU, or a
printer. It could be a software resource, such as a database, a directory service, a
service that converts among different file or message formats, or a large legacy system.
At the very highest level, the functional unit could be an e-utility, an application
service, or even an individual business. The managerial unit is what distinguishes
the autonomic element from its non-autonomic counterpart, as it relieves humans of
the responsibility of monitoring and managing the functional unit. The evolution
towards fully autonomic computing is likely to proceed through gradual addition of
increasingly sophisticated managerial units to existing functional units.

Each autonomic element will be responsible for managing its own internal state
and behavior, and for managing its interactions with an environment that consists
largely of signals and messages from other elements and the external world. Its
internal behavior and its relationships with other elements will be driven by goals
that are embedded within it by its designer, dictated to it by another element that
has authority over it, or sub-contracted to it by a peer element with its tacit or
explicit consent. The element may require assistance from other elements in order to
achieve its goals or complete its tasks. If so, it will be responsible for obtaining the
necessary resources from other elements, and for dealing with exception cases such as
the unavailability or failure of a required resource.

Autonomic elements will be employed at many different levels, ranging from indi-
vidual computing components such as individual disk drives to small-scale computing
systems such as individual workstations or servers to entire automated enterprises that
are situated in the largest autonomic system of all: the global economy. Especially at
the highest levels of function and complexity, autonomic elements may have significant
substructure beyond their division into managerial and functional units: they could
be autonomic systems in their own right, with their own set of autonomic elements at
the next level down. To take just one cross-section of such a layering as an example,
consider an individual component like a disk drive, which might be part of a tightly
coupled array of drives (RAID) that serves as part of a storage area network (SAN)
used by a server farm that is part of an e-utility that provides web hosting services
to computing systems of other companies for a fee. In some autonomic systems, this

9

layering will look like a relatively strict hierarchy of management and control, with
autonomic elements at higher levels dictating the behavior or the goals of those in the
next level down. In other autonomic systems, there will still be identifiable levels of
aggregation and boundaries of ownership, but the relationships among the autonomic
elements will tend to be more biased towards peer-to-peer, with interactions that cut
across several levels or boundaries.

At the lower levels of autonomic systems, an autonomic element’s range of internal
behaviors and the nature of its relationships with other elements may be relatively
limited and hard-coded, and the set of elements with which it can interact may be
relatively limited and hard-wired. This would tend to be most appropriate at the
smaller scales of autonomic computing, down near the circuitry level, where pre-
wired configurations of elements are essential for high performance, and there are few
or no alternatives available for elements that fail or misbehave. Particularly at the
level of individual components, well-established techniques—many of which fall under
the rubric of fault-tolerance—have led to the development of elements that rarely fail,
which is one important aspect of being autonomic. Decades of careful development
and application of fault-tolerance techniques have produced marvels of engineering
such as IBM zSeries servers, with a mean time to failure of several decades[13].

As one progresses to higher-level autonomic systems, fixed behaviors, connections,
and relationships will evolve towards increased dynamism and flexibility. All of these
aspects of autonomic elements will be expressed in more high-level, goal-oriented
terms, leaving to the elements themselves the responsibility for resolving the details
adaptively, on the fly. Hardcoded behaviors will give way to behaviors that are ex-
pressed as high-level objectives, such as “maximize this utility function”, or “find a
reputable message translation service”, or “maintain this service level objective within
10% of its target value4.” These high-level objectives will include business-level poli-
cies specified by humans, high-level goals encoded into autonomic elements by their
designers, and ultimately high-level goals that are created automatically and dynam-
ically by one element and passed along to another subordinate element. Hardwired
connections among elements will give way to less and less direct specifications of an
element’s partners, from specification by physical address to specification by name
and finally to specification by function, with the identity of the partner being resolved
only at the moment that it is needed. Hardwired relationships will evolve into flex-
ible and ephemeral relationships that are established via negotiation. Elements will
handle new modes of failure, such as contract violation by a supplier, by restarting
the process of finding and negotiating with new suppliers.

Autonomic elements will be both providers and consumers of services. Often, an
element will serve in both roles, consuming services provided by other elements and
combining and refining them into a new service. For example, a server element might
rely upon one or more database elements for database services, while each database
element could in turn rely upon one or more storage elements to help it satisfy its
commitments to the server element. This leads naturally to an economic view of

4Under the right circumstances, control theory has been found to be a reasonable approach to
maintaining service level objectives without depending upon a pre-existing model of the system [14].

10

an autonomic computing system as a self-assembling, adaptive web of interacting
autonomic elements that draw upon one another’s resources and services in an effort
to satisfy their individual objectives. Indeed, economic principles appear likely to be
an important resource allocation paradigm for autonomic systems.

In higher-level autonomic systems, service-oriented architectural concepts such as
are embodied in Web Services and Grid Services languages and technologies [15, 16]
will play an important role in autonomic computing. However, service-oriented ar-
chitecture will not by itself provide a sufficient foundation for autonomic computing.
In their role as service providers, autonomic elements will not unquestioningly honor
requests for service, as would typical objects invoked in an object-oriented environ-
ment, or typical software components, or today’s Web Services. They will only pro-
vide a service if to do so is consistent with their goals. Moreover, in their role as
consumers, autonomic elements will autonomously and proactively issue requests to
other elements in order to carry out their objectives. They will have complex life
cycles, continually carrying on multiple threads of activity, continually sensing and
responding to the environment in which they are situated. Autonomy, proactivity,
and goal-directed interactivity with their environment are distinguishing characteris-
tics of software agents. Thus, the higher levels of autonomic computing systems will
be multi-agent systems populated with large numbers of software agents functioning
as autonomic elements, and agent-oriented architectural concepts will be critically
important in the design of autonomic computing systems [17].

4 Engineering Challenges

In this section, we discuss some of the most significant engineering challenges that will
be encountered in designing and implementing autonomic systems. The challenges
faced at the lower, more hardwired levels will tend to be either more familiar (such as
error discovery techniques on memory chips or instruction re-try on IBM zSeries CPU
chips [18]), or else they will be a subset of those occuring at the higher, more dynamic
levels. Therefore, to expose as many new issues as possible, we shall focus mainly
on the higher, more distributed levels of autonomic computing. We shall progress
from issues pertaining to the individual autonomic element itself to those concerning
relationships among autonomic elements, culminating in a discussion of system-wide
issues and interfaces between humans and autonomic systems.

4.1 Life cycle of an autonomic element

As a vehicle for exploring some of these challenges inherent in developing and deploy-
ing an autonomic element, we shall consider its life cycle, beginning with how it is
programmed, continuing with testing and verification, on to installation, configura-
tion, optimization, upgrading, monitoring, problem determination and recovery, and
culminating finally in de-installation or replacement.

Consider first the challenge of programming autonomic elements. The program-
ming model is likely to be agent-oriented—that is, it will entail interactions among

11

“autonomous components (agents) that have particular objectives to achieve[17].”
Major issues include how to represent high-level tasks and capabilities, and how to
write planning and execution engines that map these high-level specifications into
lower-level actions. Programming an autonomic element will require encoding within
it policies: high-level specifications of goals or constraints, typically in the form of
rules or utility functions. It may also entail coding within the element the means to
acquire policies on the fly from administrators or other elements. Programmers will
also need to be concerned with how an element will negotiate and otherwise interact
(perhaps strategically) with potential customers and suppliers.

Testing autonomic elements and verifying that they behave correctly will be es-
pecially challenging in large-scale systems, since in general it will be difficult to an-
ticipate the environment in which the elements will be situated—especially when the
environment extends across multiple administrative domains or enterprises. Test-
ing networked applications that require coordinated interactions among several au-
tonomic elements will be even more difficult. Designers and owners of autonomic
elements might gain some measure of comfort by placing them within simulation or
testbed environments that automatically exercise them in various ways. However,
such techniques will never be able to verify that an autonomic element (or a set of
autonomic elements) will behave as intended under all circumstances. It will be vir-
tually impossible to build test systems that capture the size and complexity of the
actual systems they are simulating, and moreover it will be virtually impossible to
generate and run through the simulator a set of workloads that will capture all of
the possible event sequences that may occur in the real system. It might be possible
to test newly deployed autonomic elements in situ by having them perform alongside
more established and trusted elements of similar functionality. Potential customers
of a given element may also care to test and verify its behavior, both prior to the
establishment of a service agreement, and during the provision of that service (to
ensure that it is being delivered as promised). One approach is for the autonomic
element to attach a testing method to its service description.

Installation and configuration of autonomic elements will most likely entail a boot-
strapping process, beginning with the element registering itself (publishing its capa-
bilities and contact information) to a directory service. The element might also use
the directory service to discover suppliers or brokers that may provide information
or services needed to complete its initial configuration, and to seek out potential
customers or brokers to which it can delegate the task of finding customers.

Monitoring will be an essential feature of autonomic elements. Elements will con-
tinually monitor themselves to ensure that they are meeting their own objectives, and
they will log this information to serve as the basis for adaptation, self-optimization, or
reconfiguration. Autonomic elements will also continually monitor the performance
of their suppliers, to ensure that they are receiving the agreed-upon level of service,
and they will monitor their customers, to ensure that they are not exceeding the
agreed-upon level of demand. There may even be special sentinel elements5 whose
purpose is solely to monitor the behavior of other elements, and alert other elements

5Sentinels are a familiar and powerful concept from the multi-agent systems literature.

12

when they fail.
Monitoring will also be important because, especially when coupled with event

correlation and other forms of analysis, it supports problem determination and recov-
ery when a fault is found or suspected. It will be a challenge to apply monitoring,
audit and verification tests at all the points that they are needed, without burden-
ing systems with excessive bandwidth or processing demands. Technologies to allow
statistical or sample-based testing in a dynamic environment may prove helpful.

Envisioning autonomic systems as a complex supply web, it seems apparent that
some aspects of problem determination will become easier than they are currently,
while others will become harder. An autonomic element that detects poor perfor-
mance or failure in a supplier may not care about the reason—it may simply work
around the problem by finding a new supplier to fulfill its needs. In other situations,
however, it will be necessary to determine why one or more elements are failing, and
it will be necessary to do so without shutting down and restarting the entire system.
Here the complex and ever-changing connectivity of the supply web will hamper ef-
forts to trace problems to their source. We will need theoretically-grounded tools for
tracing, simulation, and problem determination in complex dynamic environments.

Particularly when autonomic elements (or applications based on interactions among
multiple elements) have a large amount of state, it will be challenging to recover
gracefully and quickly from failure, or to restart applications after software has been
upgraded, or after function has been relocated to new machines. Today, transaction
systems, transactional applications, and database systems require the state to be re-
constructed by loading and initializing large programs and reading huge log files—a
process that can take half an hour or more. We must find ways to reduce the restart
or recovery time by at least two orders of magnitude, and to avoid reconstructing the
portion of the state that contained or led to the original fault. Researchers at the
University of California at Berkeley and Stanford University have made a promising
start in this direction[19, 20].

Autonomic elements will need to upgrade themselves from time to time. They
might subscribe to a service that alerts them to the availability of relevant upgrades,
and decide for themselves when to apply the upgrade (possibly with guidance from
another element or a human). Alternatively, entirely new elements incorporating the
upgrade could be created afresh as part of a system upgrade, and outmoded elements
could be eliminated only after the new ones establish that they are working properly.

We have highlighted a few of the many challenges faced by autonomic elements
at several of the stages in their life cycle. An additional challenge is the overall
management of the life cycle of an autonomic element. Autonomic elements will
typically be engaged in many activities simultaneously—participating in one or more
negotiations that are at various phases of completion, proactively seeking inputs from
other elements, etc. They will need to schedule and prioritize the myriad activities in
which they are involved. They will need to represent their life cycle, both to reason
about it and to communicate it to other elements. Particularly long-lived autonomic
elements may outlive their own hardware. In such cases, the life cycle management
must migrate an element to other hardware prior to any hardware upgrade, and it
may need to migrate the element to the new hardware once it is in place.

13

4.2 Relationships among autonomic elements

In its most dynamic and elaborate form, the service relationship between two or more
autonomic elements will also have a life cycle. Elements will specify their capabilities
and their needs, locate one another, and negotiate with one another to establish an
agreement. The elements that are parties to the agreement will then execute the
established agreement. First, they will provision their resources to allow the service(s)
to be provided; this may require a provider to procure services to help it meet its
obligation. Then, they will operate under the negotiated agreement, and finally they
will terminate the relationship. Each stage of this life cycle engenders its own set of
engineering challenges and standardization requirements.

1. Specify. An autonomic element must have associated with it a set of output
services it can perform and/or a set of input services that it requires, expressed
in a standard format so that it can be understood by other autonomic elements.
Typically, the element will register a description of its capabilities, and details
about addresses and protocols that can be used to communicate with it, with
a directory service such as Universal Description, Discovery, and Integration
(UDDI) [21] or the Open Grid Services Architecture (OGSA) Registry [16]. Es-
tablishing standard service ontologies and a standard service description syntax
and semantics that is sufficiently expressive for machines to interpret and reason
about is an area of active research, of which the the Semantic Web effort [22]
sponsored by DARPA is representative.

2. Locate. An autonomic element must locate input services that it needs, and
must be located by other elements that want to use its output services. If it has
a simple, static relationship with other elements, this just amounts to following
a pointer. If it must locate other elements dynamically, it may look them up
by name or by function in a directory service, possibly by means of a search
process that involves sophisticated reasoning about service ontologies. Then,
the element may contact one or more potential service providers directly and
engage in a conversation or a negotiation to determine whether they can obtain
exactly the service they require. Autonomic elements will rely upon naming
facilities provided by their environment, and secure mechanisms for establishing
one another’s identities.

In general, but especially when the system spans multiple trust boundaries,
autonomic elements will need to choose potential partners on the basis of their
suitability or reliability. They will base such decisions on their own experience
or on information or recommendations from third-party reputation services.
While automated reputation and automated recommendation techniques have
been the subject of some research for the last half dozen years or more [23, 24],
several significant challenges remain. For example, the electronic environment
affords numerous opportunities for cheating and collusion, which require more
robust reputation or recommendation mechanisms than have yet been proposed.

3. Negotiate. Once an element finds potential providers of an input service, it

14

must negotiate with them in order to obtain that service. We construe “ne-
gotiation” very broadly to be any process by which an agreement is reached.
In situations in which the element providing a service is subservient to the one
requesting it, the original request will really be a demand for service, and that
request will constitute the agreement unless the provider is unable to satisfy it
due to resource limitations. Other simple forms of negotiation are first-come,
first-served, i.e. the provider satisfies all requests until it runs into resource
limitations, and posted price, i.e. the provider sets a price (in real or artifi-
cial currency) for its service, and the requester must take it or leave it. More
complex forms of negotiation range from various forms of bilateral negotiation
involving proposals and/or counterproposals, and multilateral negotiations over
multiple attributes, such as price, service level, priority, etc. Especially when
they are multi-lateral, negotiations may be assisted by a third-party arbiter.

Several aspects of negotiation will be rich sources of engineering and scien-
tific challenges for autonomic computing. First, elements require flexible ways
to express multi-attribute needs and capabilities that go beyond simple utility
functions and constraints, and they need mechanisms for deriving these ex-
pressions of value or cost from human input (e.g., via preference elicitation)
or from computation. Second, elements will need effective negotiation strate-
gies that satisfy as optimally as possible the individual goals of the elements,
or the goals of the system as a whole. Third, there is a need for protocols
that establish the rules of negotiation and govern the flow of messages among
the negotiators. A promising approach is for each element to execute its local
copy of a shared conversation policy [25, 26] that specifies the set of messages
that can be transmitted or received in any given conversational state, and the
state transitions that occur upon the transmission or receipt of each message.
Finally, there are several challenges associated with service agreements, the cul-
minations of successful negotiations. There is a need for languages that express
service agreements in their transient and final forms. This entails standardizing
the syntax and semantics for describing the various service attributes (such as
duration, cost, latency, and bandwidth), the procedures to be used for detecting
failures and resolving disputes, and other details. Efforts to standardize the rep-
resentation of agreements, such as tpaML (Trading Partner Agreement Markup
Language) [27], are being developed under the ebXML initiative. There is a
need for automated mechanisms for negotiating [28], enforcing, and reasoning
about agreements; early work in the agents community may serve as a good
foundation. Two additional challenges that remain largely unaddressed include
mechanisms for translating terms of agreements into plans of action and solu-
tions to resource deadlock—a classical problem that will take on new guises.

4. Provision. Once an agreement has been reached, the parties to the agreement
must provision their internal resources so that the service can be provided.
This may be as simple as noting in an access list that a particular element may
request service in the future, or it may entail the establishment of additional
relationships with other elements to which part of the agreed-upon service or

15

task is subcontracted.

5. Operate. Once both sides are properly provisioned, they may operate under
the negotiated agreement. The managerial unit of the service provider would
oversee the operation of its functional unit, monitoring it to ensure that the
agreement is being honored; the service requester might similarly monitor the
level of service. If the agreement is not being met, one or both of the elements
would seek an appropriate remedy—including assessing a penalty, renegotiating
the agreement, and taking technical measures to minimize any harm from the
failure. If the problem were to persist, the service requester might terminate
the agreement and renegotiate a new one with another party.

6. Terminate. When the agreement has run its course, the parties agree to termi-
nate it, possibly freeing their internal resources for other uses and terminating
agreements for input services that are no longer needed. Pertinent information
about the service relationship with the various partners may be recorded in a
reputation database.

4.3 System-wide issues

There are some additional, very important engineering issues that arise at the level
of the system as a whole. Among these are security, privacy, and trust, and the
emergence of new types of services that are not extensions of traditional functional
units, but are created to serve the needs of other autonomic elements.

Autonomic computing systems will be subject to essentially all of the issues in
security, privacy and trust that exist in traditional computing systems. Autonomic
elements and systems will need to both establish and abide by security policies, just
as human administrators do today, and they will need to do so in a manner that is
understandable and failsafe. Systems that span multiple administrative domains—
and especially those that cross company boundaries—will be subject to many of the
challenges that now confront electronic commerce, including authentication, autho-
rization, encryption, signing, secure auditing and monitoring, non-repudiation, data
aggregation and anonymization, and compliance with complex legal requirements that
vary from state to state or country to country.

The autonomic systems infrastructure must provide autonomic elements with the
means to reliably identify themselves, reliably verify the identities of other entities
with which they communicate, reliably verify that a message has not been altered in
transit, and ensure that messages and other data are not read by unauthorized parties.
Elements must also appropriately protect private and personal information that comes
into their possession, to satisfy privacy policies and privacy laws. Privacy measures
that keep data segregated according to its origin or its purpose must be extended into
the realm of autonomic elements to satisfy policy and legal requirements.

Elements of autonomic systems, and the infrastructure upon which they are built,
must be robust against attacks. Autonomic systems may be prone to new and in-
sidious forms of attack. In traditional computing systems, attackers alter a system’s

16

behavior via direct intervention. In autonomic computing systems, an attacker might
attain much greater leverage by altering either the system’s goals or its monitors.
Preventing problems of this sort may require a new subfield of computer security
that seeks to thwart fraud and fraudulent persuasion of autonomic elements.

At the larger scales, autonomic elements will be agents, and autonomic systems
will be multi-agent systems. Accordingly, they will possess standard facilities, most
likely based on Web Services or OGSA infrastructures, that support naming, locating
and communicating among agents, as well as means for managing the creation, de-
struction, or admission of new agents. They will include facilities that enable agents
to communicate with agents on other platforms [29], and permit migration of agents
across platforms. Autonomic systems will be inhabited by “middle agents” [30] that
serve as intermediaries of various types, including directory services, matchmakers,
brokers, auctioneers, data aggregators, dependency managers (for detecting, record-
ing and publicizing information about functional dependencies among autonomic el-
ements), event correlators, security analysts, timestampers, and sentinels and other
types of monitors that assess the health of other elements, or the system as a whole.
Traditionally, many of these services have been part of the system infrastructure; in a
multi-agent, autonomic world it will be more natural and flexible to move them out of
the infrastructure and represent them as autonomic elements (or agents) themselves.

4.4 The Human-Computer Interface (HCI)

While autonomic systems will assume much of the burden of system operation and
integration, it will still be up to humans to provide autonomic systems or autonomic
elements with policies—the goals and constraints that will govern their actions. The
enormous leverage of autonomic systems will greatly reduce the number of errors made
by humans. On the other hand, this leverage will greatly magnify the consequences
of any errors that humans make in specifying the goals. Furthermore, the indirect
effect of policies on system configuration and behavior will make policy errors very
difficult to trace and correct. Therefore it will be critically important to ensure that
the specified goals represent what is really desired. This defines two related sets of
engineering challenges: ensuring that goals are specified correctly in the first place,
and ensuring that systems behave reasonably even when they are not.

First, consider the problem of ensuring that goals are specified correctly. In many
cases, the set of goals will be complex, multi-dimensional, and conflicting. Even a
goal as superficially simple as “maximize utility” will often require a human to ex-
press a complicated multi-attribute utility function. A key to reducing error will
be to simplify and clarify the means by which humans express their goals to com-
puters. Psychologists and computer scientists will need to work together to define
new languages, metaphors, and technologies for expressing goals and for visualizing
or simulating their likely effect. The right balance will have to be struck between
overwhelming humans with too many questions or too much information and under-
empowering them with too few options or too little information.

Second, consider the problem of ensuring reasonable system behavior in the face of
erroneous input. This is just another facet of robustness: autonomic systems will need

17

to protect themselves from input goals that are inconsistent, implausible, dangerous,
or unrealizable with the resources at hand. Autonomic systems will subject such
inputs to extra validation, and when self-protective measures fail they will rely on
deep-seated notions of what constitutes acceptable behavior in order to detect and
correct problems. In some cases (such as resource overload) they will inform human
operators about the nature of the problem and offer alternative solutions.

Even in highly autonomic systems, human administrators will need interfaces for
monitoring and manually controlling autonomic computing systems and their compo-
nents. By visualizing behavior and behavioral specifications at all levels, administra-
tors can verify that systems are operating as intended. Such interfaces will help build
trust in autonomic systems, and they will permit administrators to intervene on those
increasingly rare occasions when automated procedures prove inadequate. Integrat-
ing occasional low-level interventions smoothly with high-level policy specifications
will be challenging, but less and less necessary.

5 Scientific Challenges

While much of the burden of constructing and designing autonomic systems will fall
to systems and software architects, our ultimate success will hinge on the extent
to which theorists can identify universal principles that span the multiple levels at
which autonomic systems can exist, from systems to enterprises to economies. In this
section, we enumerate a few basic theoretical issues, the investigation of which may
lead to the discovery of universal characteristics of autonomic systems, and universal
principles for designing and controlling them.

A scientific challenge that lies at the heart of autonomic computing is to define
appropriate abstractions and models for understanding, controlling, and designing
emergent behavior in autonomic systems. There is a need for fundamental mathemat-
ical work aimed at understanding how the autonomic properties of self-configuration,
self-optimization, and self-maintenance and robustness, and related issues such as the
stability (or nonlinear dynamics), predictability, and performance of the system and
its constituent elements arise from or depend upon

• the behaviors, goals, and degree of adaptivity of the individual autonomic ele-
ments,

• the pattern and type of interactions among them, and

• the external influences experienced by (or demands placed upon) the system.

Understanding the mapping from local behavior to global behavior is a necessary
but insufficient condition for being able to control and design autonomic systems. We
must also figure out how to exploit the inverse relationship: How can we derive a
set of behavioral rules and interaction rules and patterns that, if imbedded within
individual autonomic elements, will induce a desired global behavior? The nonlinear-
ity of emergent behavior makes such an inversion highly non-trivial. One plausible
approach couples advanced search and optimization techniques with parameterized

18

models of the local-to-global relationship and the likely set of environmental influ-
ences to which the system will be subjected. This approach has been pioneered by
Mitchell et al. at the Santa Fe Institute, who have used genetic algorithms to evolve
the local transformation rules of simple cellular automata to achieve desired global
behaviors [31]. Wolpert and colleagues have developed an alternative for coopera-
tive multi-agent systems called the COIN (COllective INtelligence) framework [32].
Given a high-level global objective, they derive individual goals for the agents which,
when followed selfishly by each agent, result in the desired global behavior. But these
efforts are just a start. It remains a challenge to understand the fundamental limits
on what classes of global behavior can be achieved, and to develop truly practical
methods for designing the emergent behavior of systems to a given specification.

The methods of Mitchell, Wolpert and their colleagues are aimed at establishing
the rules of a system at design time. But autonomic systems must deal with continual
shifts in demand, and changes in their own structure and function that can only be
known at run time. Control theoretic approaches may prove very useful in this capac-
ity. In particular, managerial units may use control systems to govern the behavior
of their associated functional units. The greatest value is likely to be found in exten-
sions to distributed or hierarchical control theory, which consider interactions among
independently or hierarchically controlled elements, rather than focussing purely on
an individual controlled element. Newer paradigms for control may be needed in cases
where there is not a clear separation of scope or time scale.

A second, related scientific challenge is to develop a theory of robustness for
autonomic systems, including definitions and analyses of robustness, diversity and
redundancy, and their relationship to one another. While there has been some in-
teresting work on tradeoffs between robustness and optimality over the last several
years, much remains to be done. It is encouraging to see that the Santa Fe Institute
is nucleating a multidisciplinary study of robustness[33].

A third fundamental scientific challenge is to develop a theoretical foundation for
learning and optimization in both cooperative and competitive multi-agent systems.
There is a great need for results that cover both the perspective of individual agents
(i.e. what learning and optimization techniques are best suited to multi-agent envi-
ronments) and the perspective of the system as a whole (i.e. what are the possible
collective modes of behavior that may exist in a society of adaptive agents). Ma-
chine learning by a single agent in relatively static environments is well studied, and
well supported by strong theoretical results. However, in the more sophisticated au-
tonomic systems, individual elements will be agents that continually adapt to their
environment—an environment that consists largely of other agents. Thus, even if
external conditions do not vary, the fact that individual agents are adapting to other
adaptive agents violates the traditional assumptions on which single agent learning
theories are based. One can try to apply traditional machine learning techniques
despite the lack of theoretical guarantees on convergence; in some cases this happens
to work, and in others it leads to interesting forms of instability [34]. Learning in
multi-agent systems is a very challenging problem, but it is relatively unexplored.
There are virtually no major theorems, and only a small number of empirical results.
The few authors who have ventured into learning in multi-agent systems have tended

19

to combine methods of game theory with machine learning, but this approach may
not be practical for nontrivial problems with moderate to large numbers of agents.

Just as learning becomes a much more interesting and challenging problem in
multi-agent systems, so does optimization. The root cause is the same—whether
it is because they are learning or because they are optimizing, agents are changing
their behavior, making it necessary for other agents to change their behavior, and
so on, potentially leading to instabilities. Optimization in such an environment will
need to deal with dynamics that may be created by a collective mode of oscillation
rather than a drifting environmental signal. Optimization techniques that inherently
assume a stationary environment have been observed to fail pathologically in multi-
agent systems in various ways [35, 36], and will therefore have to be either revamped
or replaced with new, inherently dynamic optimization methods.

A fourth general scientific challenge for autonomic computing is to establish a solid
theoretical foundation for negotiation from two perspectives: that of the individual
autonomic elements, and that of the system as a whole. From the perspective of
individual elements, it is important to develop and analyze algorithms and negotiation
protocols, and to determine what bidding or negotiation algorithms are most effective.
At the system level, it is important to establish how the overall system behavior
depends upon the mixture of negotiation algorithms employed by the population of
autonomic elements, and to establish the conditions under which multilateral (as
opposed to bilateral) negotiations among elements are necessary and/or desirable.

A fifth general scientific challenge is to automate to the fullest possible extent
the construction of statistical models of large networked systems that allow overall
performance problems to be detected or predicted from a stream of sensor data from
individual devices. At long time scales (roughly the scale at which the configuration
of the system changes), we seek methods that automate the intelligent aggregation
of statistical variables to reduce the dimensionality of the problem to a size that is
amenable to adaptive learning and optimization techniques that operate on shorter
time scales.

A sixth and final scientific challenge is to develop appropriate theories and theo-
retical constructs for measuring, understanding, and proving properties of autonomic
systems. These may include

• a process algebra with general primitives for initiating, monitoring, moving,
killing, retrying, restarting, compensating autonomic elements,

• methods for guaranteeing idempotency of operations, and

• representation of tasks and services, with composition/decomposition rules, con-
flict graphs, and a general algebra and logic of tasks.

These and numerous other fundamental questions will require a concerted effort by
researchers in a diverse set of fields, including the science of complexity and emergent
phenomena, machine learning, economics, and computer science.

20

6 Conclusions

We believe that the grand challenge of creating autonomic computing systems can
be met. Realizing our long-term vision won’t require magic, and it won’t require full
solution of the AI problem, but it will require a worldwide, multidisciplinary effort by
researchers in academia and industry to address several deeply challenging scientific
and engineering problems, some of which have been outlined in this article. Long be-
fore many of the more challenging problems are solved, less automated realizations of
autonomic systems will prove to be extremely valuable6, and their value will increase
substantially as autonomic computing technology improves and earns greater trust
and acceptance.

Many subfields of computer science will be called upon as we reach towards the
long-term vision of autonomic computing, including software architecture, program-
ming languages, agents, machine learning, and many others. But now that computing
technology is so deeply woven into the fabric of our daily lives, it is fitting that this
latest major paradigm shift in computing must draw upon disciplines that lie far
beyond the traditional boundaries of computer science. We will look to scientists
studying nonlinear dynamics and complexity for new concepts and theories of emer-
gent phenomena and robustness, to economists and e-commerce researchers for ideas
and technologies regarding negotiation and supply webs, and to psychologists and
human factors researchers for new goal-definition and visualization paradigms, and
for ways to help humans build trust in autonomic systems. We anticipate contribu-
tions from the legal profession as well, as many of the same issues that are arising
in the context of electronic commerce will be important in autonomic systems that
span organizational or national boundaries. How can we get autonomic elements to
understand and adhere to laws and regulations? Can autonomic elements enter into
legally binding agreements with one another? Who is legally responsible for their
decisions and actions?

It will be a challenge in itself to bridge the language and cultural divides among
the many different disciplines that will be brought together in this endeavor, and to
harness this diversity to yield successful and perhaps universal approaches to auto-
nomic computing. It will be interesting to see what new cross-disciplines develop as we
begin to work together to solve the fundamental problems of autonomic computing.

Acknowledgments

The author is indebted to the many people who influenced this paper with their ideas
and thoughtful criticisms. Special thanks go to David Chess and David Chambliss
for contributing and summarizing valuable thoughts on life cycle, security, and HCI
issues. The author is also grateful to Bill Arnold, David Bantz, Rob Barrett, Peter

6One good first step is to introduce better instrumentation into today’s systems, so that their
state can be understood in greater detail. Even before we invent mechanisms that can effectively
exploit detailed information about system state, such information will benefit system administrators
greatly.

21

Capek, Alan Ganek, Germán Goldszmidt, James Hanson, Joseph Hellerstein, James
Kozloski, Charles Peck, Ed Snible, and Ian Whalley for their helpful comments, and
to members of the IBM Academy team for their extensive written and verbal con-
tributions to this document. Members of the IBM Academy effort included Lisa
Spainhower and Kazuo Iwano (co-leaders), William H. Tetzlaff (technical committee
contact), Robert Abrams, Sam Adams, Steve Burbeck, David Chambliss, Bill Chung,
Denise Y. Dyko, Stuart Feldman, Lorraine Herger, Mark Johnson, James Kaufman,
David Kra, Ed Lassettre, Andreas Maier, Timothy Marchini, Norm Pass, Colin Pow-
ell, Stephen A. Smithers, Daniel Sturman, Mark N. Wegman, Steve R. White, and
Daniel Yellin.

References

[1] IBM. Autonomic computing: IBM’s perspective on
the state of information technology. Available at
http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf.

[2] Paul Horn. Keynote speech to National Academy of Engineers. Delivered at
Harvard’s Division of Engineering and Applied Sciences, March 8, 2001.

[3] Richard Morochove. Big Blue bets big on little Linux. Toronto Star, August 24,
2000.

[4] Harris Miller. Despite decline in IT workforce, the numbers indicate future
optimism. URL: http://www.itaa.org/news/view/ViewPoint.cfm?ID=23, May
31, 2002.

[5] Jeffrey O. Kephart, Gregory B. Sorkin, and Morton Swimmer. An immune
system for cyberspace. In Proceedings of the IEEE Symposium on Systems, Man,
and Cybernetics, pages 879–884, 1997.

[6] Steven Hofmeyr and Stephanie Forrest. Architecture for an artificial immune
system. Evolutionary Computation Journal, 7(1):45–68, 2000.

[7] Marco Dorigo and Gianni Di Caro. Ant colony optimization: A new meta-
heuristic. In 1999 Congress on Evolutionary Computation, pages 1470–1477,
Piscataway, NJ, 1999. IEEE Service Center.

[8] Michael P. Wellman. A market-oriented programming environment and its ap-
plication to distributed multicommodity flow problems. Journal of Artificial
Intelligence Research, 1:1–23, 1993.

[9] Richard J. Niemiec, Joe Trezzo, Rich Niemiec, and Bradley D. Brown. Oracle
Performance Tuning Tips and Techniques. McGraw-Hill Professional Publishing,
1999.

[10] Guy Harrison. Oracle SQL High-Performance Tuning. Prentice Hall, 2000.

22

[11] Jonathan Lewis. Practical Oracle 8i: Building Efficient Databases. Addison-
Wesley, 2001.

[12] Anil Somayaji and Stephanie Forrest. Automated response using system-call
delays. In Proceedings of the 9th USENIX Security Symposium, Denver, August
2000.

[13] IBM eServer zSeries e-commerce solutions. http://www-
1.ibm.com/servers/solutions/ecommerce/zseries/.

[14] S. Parekh, N. Gandhi, Joseph L. Hellerstein, Dawn Tilbury, T. S. Jayram, and
Joseph Bigus. Using control theory to achieve service level objectives in per-
formance management. In IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

[15] Heather Kreger. Web services conceptual architecture (WSCA 1.0). Available at
http://www-4.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, 2001.

[16] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology
of the grid: Open grid services architecture for distributed systems integration.
Draft, February 2002.

[17] Nicholas R. Jennings. On agent-based software engineering. Artificial Intelli-
gence, 117:277–296, 2000.

[18] IBM. Introducing the IBM eServer zSeries 900 platform: A
self-managing, multi-system server. Available at http://www-
1.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/gf225174.pdf,
2000.

[19] G. Candea and Armando Fox. Recursive restartability: Turning the reboot
sledgehammer into a scalpel. In Proceedings of the 8th Workshop on Hot Topics
in Operating Systems (HotOS-VIII), 2001.

[20] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. En-
riquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tet-
zlaff, J. Traupman, and N. Treuhaft. Recovery oriented computing (ROC): Moti-
vation, definition, techniques, and case studies. Technical Report CSD-02-1175,
University of California at Berkeley CS Department, March 2002.

[21] Ariba, IBM, and Microsoft. UDDI technical white paper.
http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf, 2000.

[22] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, May 2001.

[23] G. Zacharia, A. Moukas, and P. Maes. Collaborative reputation mechanisms in
electronic marketplaces. In 32nd Hawaii International Conference on System
Sciences, 1999.

23

[24] Bin Yu and Munindar P. Singh. A social mechanism of reputation management
in electronic communities. In Cooperative Information Agents, pages 154–165,
2000.

[25] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What is a conversation
policy? In Issues in Agent Communication, pages 118–131, 2000.

[26] James E. Hanson, Prabir Nandi, and David W. Levine. Conversation-enabled
web services for agents and e-business. In Proc. 3rd International Conference on
Internet Computing (IC 2002), 2002.

[27] A. Dan, D. M. Dias, R. Kearney, T. C. Lau, T. N. Nguyen, F. N. Parr, M. W.
Sachs, and H. H. Shaikh. Business-to-business integration with tpaML and a
business-to-business protocol framework. IBM Systems Journal, 40(1), 2001.

[28] N. R. Jennings, P. Faratin, A. R. Lumuscio, S. Parsons, C. Sierra, and
M. Wooldridge. Automated negotiation: Prospects, methods and challenges.
International Journal of Group Decision and Negotiation, 10:199–215, 2001.

[29] Foundation for Intelligent Physical Agents web page. URL: http://www.fipa.org.

[30] H. Wong and K. Sycara. A taxonomy of middle-agents for the internet. In Pro-
ceedings of the 4th International Conference on Multi-Agent Systems (ICMAS-
2000. IEEE Computer Society, 2000.

[31] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson.
Evolving globally synchronized cellular automata. In Larry Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms, pages
336–343, San Francisco, CA, 1995. Morgan Kaufmann.

[32] David Wolpert, Kevin Wheeler, and Kagan Tumer. Collective intelligence for
control of distributed dynamical systems. Technical Report NASA-ARC-IC-99-
44, NASA, 1999.

[33] Santa Fe Institute robustness program web page.
http://discuss.santafe.edu/robustness.

[34] Jeffrey O. Kephart and Gerald J. Tesauro. Pseudo-convergent Q-learning by
competitive pricebots. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning (ICML’00), pages 463–470, Stanford, CA., 2000.

[35] Jeffrey O. Kephart, Rajarshi Das, and Jeffrey K. MacKie-Mason. Two-sided
learning in an agent economy for information bundles. In Agent Mediated
Electronic Commerce, Lecture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, 2000.

[36] Jeffrey O. Kephart, Christopher H. Brooks, Rajarshi Das, Jeffrey K. MacKie-
Mason, Robert S. Gazzale, and Edmund H. Durfee. Pricing information bundles
in a dynamic environment. In Proceedings of ACM EC-01, 2001.

24

 1

Magic

Dr. David West
New Mexico Highlands University

“Any sufficiently advanced technology is indistinguishable from magic”
 Arthur C. Clarke
 Profiles of the Future

For the purposes of this essay we will assume an obverse version of Clarke’s insight. “If a
technology is not magical it is insufficiently advanced.” Computing and software development
are clearly not magical even though some applications, especially in cinema special effects,
certainly convey magical impressions.

The central question of this essay – can we use magic as a metaphor to re-evaluate and redefine
the theory and practice of computing? Or, stated slightly differently, can magic provide a
metaphor for opening a new frontier in the investigation and solution of the core problems
confronted by software developers and computing professionals in today’s world?

Along the way to answering this question we will explore, for just a bit, the appeal of the
metaphor and make two side trips to examine potential insights from other disciplines.

The Appeal of Magic

Magic is not a new metaphor for computing. Adept practitioners have long been referred to as
'wizards." In 1981, Vernor Vinge published a novella, True Names, using magic as a key
metaphor. Twenty years later, Vinge wrote about why magic seemed so appropriate for his
fictional account of networked computing in a place he called "The Other Plane" but which today
most people call cyberspace.

"…. Even in serious commercial programming, the magic metaphors are very
common, partly as humor, partly because they provide useful terminology to hang
reasoning on. … So the magical terminology fit with some things that go on in real
programming. … The magic metaphor was a powerful guide in the choosing of terms
…" (Frenkel 2001, pp 18-20)

Vinge's work resonated with numerous computer scientists, both at the time it was first published
and today. Marvin Minsky wrote an afterword that accompanied the first publication and he was
joined by the likes of Pattie Maes, Danny Hillis, and Richard Stallman in writing essays about the
influence of True Names in the world of computing.

The use of magical metaphor in True Names is mostly at the human-computer interface.

"Protected now against traceback, Mr. Slippery set out for the Coven itself. He
quickly picked up the trail, but this was never an easy trip, for the SIG members had
no interest in being bothered by the unskilled.

 2

 In particular, the traveler must be able to take advantage of subtle sensor
indications, and see in them the environment originally imagined by the SIG. The
correct path had the aspect of a narrow row of stones cutting through a gray-greenish
swamp. The air was cold but very moist. Weird, towering plants dripped audibly onto
the faintly iridescent water and the broad lilies. The subconscious knew what the
stones represented, handled the chaining of routines from one information net to
another, but it was the conscious mind of the skilled traveler that must make the
decisions that could lead to the gates of the Coven, or the symbolic 'death' of a dump
back to the real world.
 There was much misinformation and misunderstanding about the Portals. Oh,
responsible databases like the LA Times and the CBS News made it clear that there
was nothing supernatural about them or the Other Plane, that the magical jargon was
at best a romantic convenience and at worst obscurantism.
 A typical Portal link was around fifty thousand baud, far narrower than even a flat
video channel. Mr. Slippery could feel the damp seeping through his leather boots,
could feel the sweat starting on his skin even in the cold air, but this was the response
of Mr. Slippery's imagination and subconscious to the cues that were actually being
presented through the Portal's electrodes. The interpretation could not be arbitrary
or he would be dumped back to reality and would never find the Coven; to the traveler
on the Other Plane, the detail was there as long as the cues were there. And there is
nothing new about this situation. Even a poor writer - if he has a sympathetic reader
and an engaging plot - can evoke complete internal imagery with a few dozen words
of description. The difference now is that the imagery has interactive significance,
just as sensations in the real world do. Ultimately, the magic jargon was perhaps the
closest fit in the vocabulary of millennium Man." (Frenkel 2001, pp. 251-252)

Although interface issues are critical, and although HCI designers have yet to apply all the
insights available in True Names and subsequent science fiction works like William Gibson's
Neuromancer and Neal Stephenson's Diamond Age; this essay is more concerned with looking at
magic as a metaphor to redefine the very essence of computing itself.

To accomplish the main goal we need a better understanding of what is meant by magic and what
referents we want to associate with the metaphor when we apply it to the world of computing.
Then we need a basis (a theory or at least an ideational framework) for applying the metaphor.
For the first we will turn briefly to anthropological framings of magic and for the second a
superficial examination of one aspect of Hindu philosophy.

Magical Essentials

A belief in the supernatural is a cultural universal - all cultures of which we are aware, even
prehistoric ones exhibit some kind of belief in forces or spirits that transcend the material world.
It is useful to make a relatively clear distinction between a belief in "forces" and in "spirits."
Spirits usually have qualities like bodily form, personality, predictable responses to human
beings, etc.

Supernatural forces, on the other hand, usually have no will of their own and cannot refuse
humans who know how to invoke, command, and manipulate them. Forces, can be used for
'good' or for 'bad,' by humans who know the proper rites and spells - i.e. who know magic.

The popular conception of magic incorporates both spirits and forces. Readers of J. K. Rowlings
popular "Harry Potter" novels confront spells that affect forces and inanimate objects as well as a

 3

collection of supernatural creatures ranging from house elves to 'veela.' As entertaining as such
things might be, we will confine ourselves to the realm of forces and leave Hagrid to be
responsible for the care of magical creatures.

In 1890, Sir James Frazer proposed two logical principles or assumptions common to all forms of
magic: the imitative principle (like causes like), and the contagious principle (contact based). A
"voodoo" doll is an example of imitative magic. Spells performed on hairs, nail clippings,
jewelry, associated with the target of the spell are examples of contagious magic.

Rituals are organized performances of behaviors intended to influence or manipulate supernatural
forces. Rituals are stereotyped - the same behaviors in the same order, the same speech patterns,
the same places, the same language, the same objects of magical manipulation. Rituals may be as
simple as a single word (uttered in exactly the correct way and at the correct time in the correct
place, addressed to the correct object); or, they may involve a cast of thousands, be extra-
ordinarily complex and take many days to complete. Rituals range in their intended outcome
from manipulations intended to invoke an immediate result, to those that have no direct result, but
merely re-establish balances or harmonies among natural and supernatural forces.

From this exceptionally brief examination of the anthropological notion of magic we extract the
following ideas that we will apply to computing later in the essay.

• Users of magical things invoke responses that are intrinsic to the magical object, they do
not concern themselves with the nature of the force (what the Polynesians called mana)
that enables the magical thing to respond. (Reminiscent of objects and black-box design,
but stricter in its application - there is no "inside" of a magical thing like there is of a
black-box or object.)

• All interaction between users and magical objects is of the form, stimulus-response. The
stimulus is the ritual, the response the action of the invoked force (hopefully the desired
outcome of the invocation). If the ritual was faulty there is no response or an undesired
response. (Superficially similar to message passing, if messages are restricted to unary
imperatives.)

• User interface design will conform to limitations derived from the two principles of
magical invocation - contagion and imitation.

• Magical objects are limited to a specific set of responses. You must find the correct spirit
and use the correct incantation if you want a result. But, this limitation is also, at least
partially, a benefit - providing a way to categorize ritual-object-response triads in order to
form 'indices' that will allow us to find the one we need. (Again, some surface similarity
to ideas of classes and class hierarchies but only in terms of taxonomic organization and
classification - not inheritance.)

Metaphysics for Magicians

Vedic (Hindu) philosophers posited an ethereal dualism - separate realms of pure "mind"
(purusa) and pure inert matter (prakrti). Some kind of cosmic accident caused the two realms to
infuse one another giving rise to the phenomenological universe of which we find ourselves.
Fundamental tenets of Hinduism and Buddhism - reincarnation, enlightenment, Karma, among
others - are grounded in this basic metaphysics.

 4

A corollary of this philosophy is the assertion that every bit of prakrti - from subatomic particles
to complex organisms - has some measure of purusa associated with it. Purusa establishes the
combined entity's nature, its characteristics, and its behavioral possibilities. For example, an
electron knows how to orbit (I am using the Bohr metaphor for atomic structure with full
awareness that it is inaccurate. But it is illustrative in its own right) a nucleus because the
entangled bit of purusa both knows how to do so and wills to do so. Although rare, it is possible
for an electron to "act incorrectly" and thereby incur karmic consequences.

In more complex entities, especially biological organisms and very especially in human beings,
the quantitative accumulation of purusa yields far more interesting behavioral possibilities. (Also
greater potential for attached action and accumulation of karma.)

This kind of philosophy is not unique to Hindu and Buddhist cultures. Resonant ideas can be
found in many cultures and philosophical traditions. Brigham Young, the colonizer and first
Governor of Utah, advanced a very similar philosophy of matter infused with "intelligence." (As
far as I am aware, without any contact with Hinduism.)

Christopher Alexander (of software engineering and, later, patterns fame) espouses parallel ideas
in his newest works on the Nature of Order. His vocabulary uses "Life" instead of intelligence or
purusa but, for him, Life infuses everything to one degree or another, the lesser the degree the
lesser the "Quality Without A Name" and the greater the 'ugliness' of the construct.

The fact that purusa infuses all matter, at all levels - quantum to sentient, is justification for using
a single invocation method (simple signals) regardless of the apparent complexity of the magical
entity that is the target of the invocation. In fact, the apparent complexity of an entity (a human
being, perhaps) is exactly that - apparent. Metaphysically speaking, nothing exists except Purusa
and Prakrti so all invocations to apparent "purusa-prakrti" constructs are illusory.

Stimuli - intoning the Aum sound for example - utilize the imitative principle of magic to
generate a single, simple, stimulus directed to the unary Purusa of an apparently complex entity (a
human being). If the stimulus is correct, all the 'purusa' in the target attunes itself (vibrates
sympathetically) with the stimulus resulting in a response of self-recognizing-Self.

Tantric sexual ritual (a kind of contagious magic) uses juxtaposition, physical contact, as the
stimulus mechanism. Because the male and female entities involved in the ritual appear to be
complex constructs a lot of simultaneous juxtapositions are required - but the ritual is nothing
more than an aggregate of simple stimuli.

The relevance of this philosophy to our goal of seeking an alternative approach to computing is
threefold:

• It adds a dimension of respectability and elaborates extensively on the simpler magical
concepts of animism. The extensive exploration of the basic idea of purusa infused
prakrti and how to interact with purusa is a fertile field for secondary metaphors within
the umbrella of the Magic metaphor.

• It sets a constraint on how we conceive of "computing." Specifically, "computations" can
be nothing more than the juxtaposed responses of an amalgamation of stimulated
"purusa-prakrti-entities."

• Similarly, apparently complex stimuli (polyphonic instead of monotonic chants, yoga
postures, Tantric sexual congress) must be simple aggregations of signal-stimuli.

 5

Some development of the third point is in order. Purusa is akin to a "magical force" in that it has
no "inside" - no intrinsic nature or structure. (Some Vedic philosophers might argue this point,
but such esoterica is not relevant to our purposes here.) Purusa has nothing in common with our
typical conception of a computer program. We cannot, therefore, think of magic in terms of a
command line invocation of a stored and compiled program where that program can be arbitrarily
complex in its function. We must think instead along the lines of stimulus and response
mechanisms and conceive of programming only in terms of assembling an appropriate set of
signals addressed to an appropriate set of forces resulting in an appropriate set of responses that,
collectively, have the apparent structure of the ultimately desired result.

A variety of alternative illustrations of this stimulus-response concept are available to us.
Consider but one, sympathetic vibration - a sound inducing a response in a properly constructed
medium. Within the context of magic, an example might be the intonation of the Aum in an
attempt to create a tonal stimulus that will resonate with the basic "frequency of the Universe"
and therefore invoke a kind of harmony with that Universe. There is nothing programmatic about
a tone and any resulting sympathetic vibration.

The constraint might be seen as overly restrictive - mandating creation of only the most basic and
simple atomic responders or components. This is not the case. Complicated and multi-part
stimuli are possible and are needful for many types of invocation. But the construction of these
stimuli is not based on anything analogous to modular program design. Instead, they are
analogous to music - the creation of a chord, or the polyphonic chants of Tibetan monks. Others
are based on juxtaposition, like a sequence of notes, harmonies, or a well-turned poetic phrase. In
all cases, the invocation has an evocative nature only - there is no element of representation, of
computation or calculation, or of declaration (as understood in Lisp or Prolog programming). In
all cases the response is reflexive with almost no element of reflection. (Some element of
reflection does exist - hence the possibility of Karma, which requires willful action - but this
subtlety is not essential to the main discussion at hand.)

Our discussion of magic and Vedic philosophy yields five points that will be revisited in our
discussion of software development as "magic." In summary form, they are:

1. Users of magical things invoke/evoke responses that are intrinsic to the magical
object.

2. All interaction between users and magical objects is of the form, stimulus-response.

3. Magical objects are limited to a specific set of responses.

4. Basic stimulus-response is completely dependent on the intrinsic nature of object

being stimulated.

5. Arbitrarily complex responses can be evoked with comparably complex stimuli and
that on both sides of the invocation, all apparent complexity results from
juxtaposition (spatial or temporal) and not hierarchical decomposition.

At this point we have a metaphor and a philosophical position that can be used to support that
metaphor. Before we can discuss application we need one additional element - a possible
physical substrate to which we can apply the metaphor. For this last foundational piece, we will
briefly examine current research in nano-technology - the concept of "Smart Matter."

 6

Smart matter: bridging the mundane and the magical

"Smart Matter is one of Xerox PARC's three cross-laboratory research themes. Smart
Matter aims to exploit trends of miniaturization and integration of both computer
hardware and micro-mechanical systems to build new kinds of machines. The idea is
to trade computation (which is getting cheaper very fast) for physical or mechanical
complexity. Some of its tenets are:

• Trading off computational and physical resources.
• Integrating sensing, actuation, and computation at fine granularity.
• Co-locating mechanical, computational, and electronic functions.
• Building systems with complex behavior from many simple pieces.

As a research area, Smart Matter explores the "white spaces" among a wide range of
disciplines: distributed computing, active control, robotics, software engineering,
wireless communication, low-power electronics, smart materials, and MEMS."
 John Gilbert, Principal Scientist
 Xerox PARC

Xerox PARC (now PARC, Inc.) started the smart matter project at a fairly gross level of matter -
a perforated board large enough to support a sheet of paper in need of alignment. At each hole in
the board a jet of air could be used to create a force to align a sheet of paper. Also at each jet: a
sensor to detect if the paper was above the jet. The sensors and jets were coupled to a computing
device that digested the sensor input and output instructions to the jets to exhale, or not.

Subsequent and future efforts focused (will focus) on moving the computation closer to the
sensor-jet dyads, perhaps with an analog of a neural net like connectivity so that the computation
will be distributed across, and be a function of, multiple dyads.

A question asked by scientists engaged in this project, "how low (small) can you go?" At least
one researcher anticipates nanometer scale smart matter. The nanytes of science fiction might
very well be a commercial product, indispensable to your children and grandchildren.

Most of the research in the area of smart matter seems to make a basic assumption about the
nature of computing in this type of environment. That assumption: essentially a replication at
smaller and smaller scales of the typical computing environment in the macro-world.
Specifically, creating small (perhaps special purpose) embedded computers communicating with
each other via wired and wireless networks. Software for these environments would likely be
familiar to any programmer of desktop and palm type applications and certainly to any embedded
systems programmer.

In Diamond Age: A young woman's primer, Neal Stephenson writes of a world where the
economy is based on nano-technology. Taking a cue from researches associated with Drexler,
Stephenson assumes that nanytes will possess on-board mechanical (nanometer scale rods and
springs) computers. A lot could be accomplished with this kind nano-scale device, but even more
might be possible if we rethought how computing might (should) be accomplished in a radically
new environment like a nanyte.

 7

There is also an inherent limit to the scale at which you can still replicate anything like a
computer and communication network. You certainly could not have computation occur at the
level of a single atom or elementary particle following the prevailing notions of computing. In all
fairness, it probably is not necessary to seek even nano-level computing. (And many people at
PARC doubt it is possible.) However, a different approach to thinking about computing might
make even gross scale smart matter simpler (and therefore much cheaper) at the same time it
enables continued reduction in the scale of smart matter devices.

Smart matter research is exciting, not because it offers new insights into the possible nature of
computing, but because it can create an environment - a kind of ultimate ubiquitous computing -
that might be exploited by a new approach to computing arising from another area - or metaphor,
like magic.

Smart matter provides a potential medium for applying the magic metaphor - one that is
consistent with the Vedic metaphysics used to extend that metaphor. We are not ready to
introduce some presuppositions or "first principles" that will provide a framework, or 'theory,'
upon which a discipline of magical computing can be based.

A Theory of Magic

One principle, four premises, and three corollaries comprise, at present, a theoretical framework
or foundation for magical computing. Additions to this foundation are likely (if anyone is
captivated enough by the metaphor to explore it in more depth) but the elements presented here
must be considered as a mandatory set. Consistency and conformity to these elements - in their
entirety - is prerequisite to making any claim to be a “magical software technology.”

Principle One: Ward Cunningham’s, “The simplest thing that could possibly work.” William of

Occam proposed a very similar principle as a tool for deciding among competing theories.
Ward's formulation is better suited to dynamic decision-making. Whenever we confront
alternatives - theoretical or applied - we will opt for the simplest choice possible. This will
become particularly relevant when we work on “casting spells” (programming) and we are
confronted with temptations to introduce complications in order to achieve “flexibility” or
“compatibility.” Adherence to Principle One mandates resistance to such temptations.

Premise one: Intelligence (purusa / spirit / life / computing) can be distributed across the entire

spectrum of potential platforms, from atoms to von Neumann architecture computers to
human beings if, and only if, two conditions are met:

One, the same mechanisms and principles apply at all levels, micro to macro, and that
mechanism is simple stimulus – response. Stimuli and responses are simple signals, no
information content (remember principle one). This does not mean that a stimulus or a
response cannot have complicated form. It merely means that, however complicated, stimuli
and responses are never anything other than aggregations of stimuli juxtaposed in space or
time.

For example: It is easy to think of a single tone as a signal with no content. It is tempting,
however to see an orchestral performance as being somehow qualitatively different.
Obviously it is not. A performance is nothing more than a collection of single tones
juxtaposed in time (simultaneous or sequential) and, to a lesser degree, space - origin points

 8

are arranged in a prescribed manner. The purpose of the amalgam of notes is the evocation of
a response in the listener(s).

Two, responses are totally dependent on local resources – the entity receiving the stimulus
can respond only on the basis of its own state, its own intrinsic nature. You cannot coerce a
magical entity to respond differently than its nature allows by passing arguments (signals
only, remember). A magical entity cannot supercede its own nature by collaborating with
other entities. No magical entity is dependent (especially in the sense of dependency familiar
to modular software developers) upon any other magical entity.

The purpose of these restrictions is easier to see when one thinks of computing at the level of a
single atom, but seem unnecessarily restrictive at macro levels. For the moment, the only rebuttal
arguments are: Ward’s first principle; and, “we are looking to redefine computing, not merely
rehash some aspect of that discipline.”

Corollary one: Representation – one of the two Cartesian (Rationalist) foundations for

computation as we currently understand it – is not our friend! Neither stimuli nor responses
‘represent’ anything – they just are. Again, this is easier to see at a micro-level but much
harder at, say, a human level where we like to believe that we are symbol processors in
addition to being subject to stimulus-response behavioral patterns. Whatever the case of
humans might actually be (an there are reasons to believe that stimulus-response plays a far
larger role in cognition that most are willing to believe) – magical computing will be
restricted to the evocative, not denotative, realm.

Corollary two: stimulus-response is as simple as computing based on binary logic without being

as simplistic. Stimuli and responses can be arbitrarily complicated but remain non-parsable,
hence without losing their status as signals. (Parsing, in this context, means you cannot
decompose a complicated signal into components with differing semantic meaning. A
complicated signal can be separated into discrete simple signals but that separation provides
no additional meaning, since it is the combined signal that is the stimulus that is required to
invoke a response.)

This gives us a much more varied and interesting set of ‘building blocks’ from which to
construct computation without incurring any of the costs associated with Turing machines.
(One example of such costs: in theory, it is possible to construct a representation of the
universe as a string of 1s and 0s. Also theoretically, a program – itself a sting of 1s and 0s,
could be constructed and applied to the first string to simulate the dynamics of the Universe.
But, construction of either string and execution of the program – all would take longer time
than the Universe itself has existed. Something more direct is required if we are to achieve
magical computing.)

Corollary three: although much of the language of stimulus-response implies some kind of

media-based exchange [like a flow (stimulus) of electronic voltage (medium) evoking a tone
(response)] there are other categories of stimulus and response. Geometry, for example, can
be a stimulus and a response – like the docking of molecules or biological organisms based
strictly on the geometry of their structure. Stimuli and responses need not be in the same
category in order to participate in any given stimulus-response construct. Consider the guitar
chord where a given response is determined by three stimuli: length of string (geometric),
tension (static-force), and stroke (dynamic-force) synthesized despite being of different
categories.

 9

Premise two: Intelligence (purusa / spirit / life / computing) implies “willful being-ness.”

Another way of stating this, “everything has a motive to exist and to participate in existence.”
This premise is primarily metaphoric. Whether or not it is literally true is irrelevant for our
purposes. When we discuss design of magical entities and incantations (spells) we will want
to use an anthropomorphic principle (as was the case in behavior driven objects) as a
constraint on our thinking. Premise two is therefore a basis for mental discipline.

Premise three: complicated stimuli and complicated responses come about from the application

of two mechanisms: synthesis and juxtaposition.

Synthesis is the seamless integration of multiple stimuli (or responses) into one. Perhaps the
best example is a chord that produces a single tone (response) via the simultaneous
application of three stimuli – tension, length, and stroke – to a single entity (a guitar string
perhaps).

Synthesis is important because it allows us to create intermediaries - magical entities that
respond to stimuli by producing an output that we can use as a stimulus to some other
magical entity.

Juxtaposition is nothing more than the congruence of stimuli and responses in terms of space
and/or time. A chord is an example of synthesis because the stimuli are integrated to evoke a
specific single response. The sound of an orchestra at a discrete interval of time is the result
of juxtaposition of discrete notes produced during that interval. A musical phrase is an
example of juxtaposition in that its overall evocative power (its ability to function as a
stimulus) results from the sequencing of discrete stimuli over a time interval.

A special case of juxtaposition would be the combination of two or more magical entities in
order to modify the responses of one or both the conjoined entities. Juxtaposing a volume of
water and a container (a jug perhaps) changes the “value” of the response evoked by the
passage of air over the mouth of the container. (Of course, it is important to juxtapose the
inner surface of the container with the volume of water rather than the outer surface if the
desired result is to be achieved.)

Synthesis and juxtaposition provide a means to achieve complicated structure without the
concomitant implication that such structures can be pre-determined or “engineered.” The
success of a musical phrase, the ability of a chord to evoke a response is not determinable
except via experimentation and after-the-fact analysis.

Premise four: It is possible for multiple entities to instantiate systems of cooperation and

coordination (via juxtaposition and synthesis), but control is both infeasible and undesirable.
It is also possible for an environment to provide coordination and enhance cooperation by
existing as a patterned or persistent ‘stimuli zone.”

An example of absence-of-control cooperation would be the “structural coupling” described
by Maturana and Varela in their “new biology” based on autopoiesis.

An example of environment-based coordination would be a magnetic field that provides a
consistent and persistent stimulus to which iron atoms respond by changing their spatial
orientation. “Field” type environments could be as simple as magnetic fields or as outré as

 10

Rupert Sheldrake’s morphogenetic fields, or as complicated as David Bohm’s and Karl
Pribram’s quantum and holographic fields, respectively.

Practical Magic

At this point we have a metaphor, “magic,” a kind of theory or explanation of how to think about
magic, and a substrate or physical platform, nanotech, which can be “enchanted.” We can also
summarize the main points discussed so far:

• Magic is an evocative process – a kind of stimulus-response mechanism. A “spell” is the
evocative stimulus.

• The ability of an “enchanted” object to respond to stimulus is not algorithmic or
programmatic in nature.

• Enchanted objects can have complicated structure, as can spells, but that structure reflects
nothing more than the juxtaposition of responses, or stimuli, in space and/or time.
Synthesis – juxtaposition that results a qualitatively different thing (like hydrogen and
oxygen juxtaposed in a specific way to create water) – is a possible consequence of
juxtaposition.

• Enchanted objects are totally and absolutely autonomous. Even when aggregated or
synthesized, there is no organization and there is emphatically no control of one object by
another.

• Enchanted objects can cooperate with each other by a process of autopoietic organization
based on the exchange of stimuli and responses. (Maturana’s and Varela’s Tree of Life: a
New Science of Biology provides insights into how this simple mechanism can generate
complex cooperative communities of objects.)

• ‘Fields,’ analogous to magnetic fields can result from the aggregate responses of a
collection of enchanted objects (the atoms in a copper winding) to a common stimulus
(application of an electrical current) and such fields can provide a common stimulus to a
collection of enchanted objects.

The value of any new metaphor derives from its utility. Utility can arise from some kind of
implementation – a new language, library, or artifact, for example – or, as in this case, by
suggesting some concrete topics for further exploration. If such explorations prove to be fruitful
in any kind of pragmatic manner then the metaphor is a good one. Some research topics:

1. Is there a finite and enumerable set of “primitive” enchanted objects from which
everything else comes into existence via juxtaposition and synthesis? Remember that
everything in the Universe results from the juxtaposition and synthesis of a finite and
pretty small number of elements. (Or a still smaller number of fundamental particles, or
a smaller yet number of quanta.)

2. Is there a way for these primitive enchanted objects to interact with each other with
resulting complicated (perhaps complex) macro-objects whose enchantment is
qualitatively different from the enchantments of any individual primitive? Autopoiesis
and biology suggest the answer is yes. Using the magic metaphor as a lens for exploring
biological metaphors of computing will likely yield quite different results than current
efforts to frame computing in biological terms or biology in computational terms.

3. Can we devise a “science” of enchanted object juxtaposition and synthesis? The goals of
such a science would be to create new and useful enchanted objects capable of providing
a response desirable for human beings. Such a science would be much more analogous to

 11

chemistry and the culinary arts than it our current understanding of computational
science.

4. Can we discover patterns in the autopoietic organization of enchanted objects that would
offer insights and shortcuts to support our new science of juxtaposition and synthesis. It
seems likely given the work of researchers as diverse as D’Arcy Thompson and
Christopher Alexander.

5. To what extent can geometry provide a formalism in support of our science of
juxtaposition the way that algebra, logic, and various calculi have provided for
contemporary computer science.

6. Can we think of user interfaces in terms of “amulets” – magical objects that exist
primarily to translate stimuli created by humans into stimuli that can evoke behavior in
magical objects? An analog for this kind of translation – the way that rubbing the rim of
a crystal bowl (an stimulus that a human can provide) evokes a tonal response that is
beyond the capability of a human voice to produce directly.

7. How would be go about enchanting ordinary objects (doors for example) so that they
would respond to simple incantations like, “open sesame?” (Perhaps, by juxtaposing a
thin layer of magical objects that reverse some kind of polarity in response to the sound
vibrations of our voice.)

8. Can we think about “demons” (somewhat similar to those found haunting operating
systems) as a special kind of mediator between humans and the magical world? A demon
would be capable of responding to a simple, human generated stimulus, by finding other
magical objects and uttering appropriate incantations to them on our behalf. Demons
would be a magical way to encapsulate our current understanding of algorithmic
computing in the sense that a program is just the juxtaposition of a set of discrete
imperatives (spells).

9. Can we devise an enchanted world where everyone can create the auditory or kinesthetic
stimuli that evoke appropriate everyday responses in support of human activities?
Wizards would be specialists that had memorized more complex spells necessary to
evoke sophisticated and special purpose responses from that world. Shamans would be
the most advanced magical practitioners – capable of creating as well as manipulating
magical objects.

Conclusion

“Papers in the Onward! Track are not aimed at advancing the state of the art - they're aimed,
instead, at altering or redefining the art by proposing a leap forward - or sideways - for
computing.”

Hopefully this paper provides some ideas curious enough and sufficiently ‘sideways’ that they
will magically evoke more and better ideas completely outside the framework provided by
contemporary computer science and software development paradigms.

Notes on Postmodern Programming

James Noble, Robert Biddle
Computer Science,

Victoria University of Wellington, New Zealand.�
robert,kjx � @mcs.vuw.ac.nz

October 29, 2002

0 Manifesto

The ultimate goal of all computer science is the program. The performance of
programs was once the noblest function of computer science, and computer
science was indispensable to great programs. Today, programming and com-
puter science exist in complacent isolation, and can only be rescued by the
conscious co-operation and collaboration of all programmers.

The universities were unable to produce this unity; and how indeed, should
they have done so, since creativity cannot be taught? Designers, programmers
and engineers must once again come to know and comprehend the composite
character of a program, both as an entity and in terms of its various parts.
Then their work will be filled with that true software spirit which, as “theory of
computing”, it has lost. Universities must return to programming. The worlds
of the formal methods and algorithm analysis, consisting only of logic and
mathematics, must become once again a world in which things are built. If the
young person who rejoices in creative activity now begins his career as in the
older days by learning to program, then the unproductive “scientist” will no
longer be condemned to inadequate science, for their skills will be preserved
for the programming in which they can achieve great things.

Designers, programmers, engineers, we must all return to programming!
There is no essential difference between the computer scientist and the pro-
grammer. The computer scientist is an exalted programmer. By the grace of
Heaven and in rare moments of inspiration which transcend the will, com-
puter science may unconsciously blossom from the labour of the hand, but a
base in programming is essential to every computer scientist. It is there that
the original source of creativity lies.

Let us therefore create a new guild of programmers without the class-dis-
tinctions that raise an arrogant barrier between programmers and computer
scientists! Let us desire, conceive, and create the new program of the future
together. It will combine design, user-interfaces, and programming in a single
form, and will one day rise towards the heavens from the hands of a million
workers as the crystalline symbol of a new and coming faith.

1

1 To Our Reader

These notes have the status of “Letters written to ourselves”: we wrote them
down because, without doing so, we found ourselves making up new argu-
ments over and over again. When reading what we had written, we were al-
ways too satisfied.

For one thing, we felt they suffered from a marked silence as to what post-
moderism actually is [77, 9]. Yet, we will not try to define postmodernism,
first because a complete description of postmodernism in general would be
too large for the paper [62, 44, 64, 73], but secondly (and more importantly)
because an understanding of postmodern programming is precisely what we
are working towards.

Very few programmers tend to see their (sometimes rather general) diffi-
culties as the core of the subject and as a result there is a widely held consensus
as to what programming is really about. If these notes prove to be a source of
recognition or to give you the appreciation that we have simply written down
what you already know about the programmer’s trade, some of our goals will
have been reached.

2

2 On Our Ability To Do Much

We are faced with a basic problem of presentation. What we are really con-
cerned about is the composition of large systems, the text of which may occupy,
say, a significant fraction all the digital storage media in the known world [74].

Our basic problem is simply the success of modern computer science. His-
tory has shown that this truth is very hard to believe. Apparently we are
trained to expect a “software crisis”, and to ascribe to software failures all the
ills of society: the collapse of the dot-com bubble [28, 31], the bankruptcy of
Enron [51], and the millennial end of the world [78].

This corrosive scepticism about the achievements of programming is un-
founded. Few doom-laden prophesies have come to pass: the world did not
end with fireworks over the Sydney harbour bridge, and few modern disasters
are due to software. To consider just two examples: the space shuttle crash was
not caused by software — indeed, Feynman praises the shuttle software prac-
tices as exemplary engineering [24]; and the Dot-Com Boom (like the South
Sea Bubble) was not caused by failure of technology, but the over-enthusiasm
of global stock markets.

In short, one cannot be woken up in the morning, travel to work, listen to
radio or music; watch television; play games; speak or TXT down the ’phone;
read newspapers or books; write conference papers, journal articles, govern-
ment or corporate reports; save or spend money; buy food, cook it, order or
pay for it at restaurants ranging from McDonalds to the Ritz; without every ac-
tivity critically depending upon the results of programming. These programs
are not perfect: but neither are they the complete, expensive failures beloved
of armchair critics, whose behaviour belies their own rhetoric whenever they
fly across the Atlantic in automated aircraft to speak at conferences and then
use Internet banking to check their accounts. The measure of software is our
irritation at its failures, not our surprise that it works at all.

Summary: as quick-witted human beings we have built very large com-
puter systems and we had better learn to live with them and respect their lim-
itations while giving them due credit, rather than to try to ignore them, so that
we will be rewarded by continued success.

3

3 On the Notion of Program

The object of study of computer science is the program — somehow cobbled
together by old-time programmers; measured, metricated, analysed, theorised,
critiqued, tested, compiled, optimised, and often ignored by modern computer
science. We consider that the term “program” is both too big and too little for
postmodern computer science.

“Program” is too big because often we are working on parts of programs:
objects, functions, classes, components. We may have no idea which (if any)
program these parts will end up part of.

“Program” is too small because often we are working on multiple pro-
grams: perhaps the small component is to be part of many large programs;
perhaps there is a framework or library that will be reused many times; per-
haps our program must communicate with other programs, who in their turn
communicate with yet more programs, so the subject of our endeavour is some-
where this interconnected network.

Large or small, the quality to which we refer is perfectly precise. Like bad
art, we know it when we see it. Still, it cannot be named.

A word which we most often use to talk about programs is “component”.

Yet, a component can only be a subpart, not a whole.

Another word which we use to talk about programs is “system”.

A system could be large, or small, but includes the strong connotation of sys-
tematic, systems theory, system thinking, that the system is organised, ratio-
nally subdivided, structured recursively into a tree of modules, modern. The
word “system” is too enclosed.

The word “algorithm” is often claimed as the central concept of computer science [35]

“Algorithm”, however, leaves out large amounts of the discipline of program-
ming: components, patterns, protocols, languages, data structures [76].

The word “software” is reminiscent of undergarments.

The phrase “the software without a name” could capture precisely what we wish
to address. Unfortunately, experience teaches us that this software would soon
have a name: “SWAN”.

Thus, we have retained the word program, but treat it as under erasure, as
meaning whatever program, program subcomponent, or supersystem we hap-
pen to be working on at the time.

4

4 On Pervasive Heterogeneity

Modern computer science dreamed of the personal computer: one machine
usable by one person running one application written in one language. The
personal computer was “the computer you could unplug”.

We have progressed far beyond the modern dream. There is a “Computing
Rainbow” [33] — an interdependent system of global computation with a mul-
titude of machines supporting many languages, applications, and users, with
heterogeneous architectures and differing capacities, costs, prices, and owner-
ship. You cannot unplug computers even if you could want to: why would
you want to avoid reading email from your friends; disconnect the full author-
ity digital engine controllers from the turbofans carrying the airliner; or remove
the cochlea implants correcting your congenital deafness?

Each of these subareas of programming has their own concerns, forces, dif-
ficulties, problems. Computer science is itself fragmented, although some con-
cerns cut across several areas. But this heterogeneity does not operate only
at the abstract level of the field as a whole; rather programs themselves are in-
creasingly heterogeneous. A program may include a PalmPilot client which in-
terfaces directly to an 360-architecture mainframe; Windows XP microcomput-
ers may feed information into a Sun minicomputer; one division of a company
may run Compaq VMS systems while another runs IBM AS/400 or HP7000.
Programs have to federate across diverse systems, without any common lan-
guage, protocol, or necessarily even character set in common.

5

5 On Abstraction

At this stage we find it easy to say something about the role of abstraction,
partly because it permeates the whole subject.

Modern computer science describes the relationships within programs as
“abstractions” — we may say an object in a program is an abstraction of the
real world [8].

Computer scientists and mathematicians are familiar with abstractions: for
example, a stack is an abstraction that might be implemented by an array, a
pointer, and some executable code; the stack is an abstraction because it elides
many of the details of actual implementation [17].

Unfortunately, it doesn’t seem to make much sense to say that a Bovine
object in a program is an “abstraction” of a real cow in a farm in this way: it
doesn’t make sense to say that the object in the program is “implemented” by
a cow in reality, or that the objects in the program are special kinds of cows
which do not eat, excrete, or expire. Alternatively, following Plato, we could
have an abstraction of a cow as the “ideal, immutable, eternal form” of a cow,
perhaps corresponding to a Cow class, but, again, this kind of abstraction is not
a good description of the relationship between the cow object and the real cow
[68].

Postmodern computer science proposes a range of different descriptions of
the relationship between programmatic object and external object. For exam-
ple, that this kind of relationship can be seen as semiotic: that is, the object in
the program can be seen as a sign of the object in the world [55, 4, 3, 2]. Un-
like abstractions, which can be reasoned about using deduction (from causes
to effects), signs are effectively implications, and are modelled using abduction
(reasoning from effects to causes) [21].

Semiosis may also support developments of a theory of debugging (de-
termining bugs from symptoms); of analysis (determining the programs from
requirements); and a metatheory of design (determining patterns, algorithms,
structures from concrete programs) [54].

6

6 On Requirements

Postmodern computer science holds that no requirements can be both com-
plete and consistent: you have to pick one.

Descriptivists, postmodernists choose completeness over consistency. In
analysing a system (for example with Usage-Centered Design [13]) we may
consider multiple users providing multiple requirements, and distinguish be-
tween actors who will finally use the system, customers who pay for it, clients
who commission it, and stakeholders who wish they were involved — all of
whom may be in conflict. Postmodern analysis uses techniques to handle in-
consistency, such as iteration on designs, prioritising, and lying where neces-
sary [61].

In contrast, modernists choose consistency over completeness. To perform
any traditional formal analysis (without resorting immediately to modal log-
ics) a description has to be consistent: before forming such a description, much
information must be elided to ensure this consistency — adopting such a frame
of reference necessarily excludes information that lies outside. Of course, a
consistent definition has the great advantage of automated or manual check-
ing, often the aim of the modernists — but as postmodernists we are willing to
coopt their techniques whenever we feel they are useful.

Computer scientists with a formal bent often claim that design and imple-
mentation are an exercise — in the refinement calculus you can gradually trans-
form a problem statement into a program, maintaining correctness at every
step: problem frames have similar potential. From a postmodern perspective,
however, such a definition is not a problem statement, but rather an abstract
definition of a solution — where refinement simply makes a solution more
concrete. Similarly, Jackson’s problem frames are selected to match particular
solutions, rather than problems per se: one fits problems to frames, rather than
adjusting frames to enclose problems [43].

Corollary of this section: Formal analysis can be used to show the absence of
bugs, but never to show the correctness of the specification. Or, to quote Alan
Perlis: “102. One can’t proceed from the informal to the formal by formal means” [59].

7

7 No Big Picture

A key characteristic of postmodernism is the absence of a “grand narrative”
[64, 50, 62]. Where once the majority of the world would have believed in God
or Marx, where architecture was simply building steel framed rectangular glass
boxes, where music was constrained to the twelve-tone row, where citizens of
a country all spoke the same language and supported the same cricket teams,
we may now contemplate with fear a sea of chaos, perhaps held together by
unenlightened self-interest.

Consider the Internet as we know it: a connection of loosely coupled com-
puter systems, of varying capacities, architectures, ownerships, costs, and sizes.
It connects every conceivable variation of every operating system and every
computer. It speaks many network protocols (HTTP of various versions and
brands; Telnet; POP; IMAP; NETBUI; AFS; SMB; . . .); and through hardware
software gateways, the systems and protocols of what appears to be the Inter-
net are in fact unlimited. It can even reach computers that have been obsolete
and no longer exist: retrocomputing lives through emulation and lives on the
Internet.

Even the user experience of the World Wide Web is extremely diverse: every
web site has its own design, its own interaction style, its own personality, with
no commonality other than the menu bar provided by an individual’s browser,
one of many available, and customisable on a whim.

Ward Cunningham’s Wiki Wiki Web [15, 49] shows that even the historic
success of the World Wide Web left room for improvement: the Wiki design
involves exquisitite light touch, and allows the Wiki to be many things at once,
all of them dynamic, collaborative, and — healthy.

Compare this all with representations of a computational “infosphere” in
popular science fiction — such as The Matrix [71] or Neuromancer [34]. These
are typically modern in character, working in a complex but coherent way, and
presenting a uniform interface: the “Matrix” presents a realistic single graph-
ical presentation common to all users. Ironically, the postmodern Internet is
more real than these fantasies; and there is no one viewpoint on the Internet,
and there may be no commonality between two web sites even if hosted on the
same server and designed by the same people.

Although it clearly developed from the original success of the modern de-
sign of the Arpanet, the success of the Internet now is postmodern in character.
But it is success. And the tolerance of eclectic diversity is a key cause of the suc-
cess of the internet: it has allowed growth and interaction instead of isolation
and alientation.

For postmodern programming, the absence of an overarching grand narra-
tive means eclectic tolerance in programming terms:

� There is equal acceptance of high and low culture: Visual Basic and Haskell
are equally of interest, as there is no reason to applaud the one and dis-
parage the other.

� The past is just another part of the present — programs can call on ele-
ments of modernism, either aesthetics or technology, and combine them
together in equal measure. As ancient computers live through emulation
on the Internet, so ancient programs and languages can live in connection
with programs not yet written.

8

� Programs can exhibit “faults in construction” that would be forbidden by
a modernist approach.

� Programming techniques (such as design patterns) and systems (such as
Aspect/J [45], or even the continuation code sections in literate program-
ming [46]) explitly support program organisation involving communi-
cating diverse elements.

Without a grand narrative, there will not be one common way to program,
or even one common kind of interface between programs. The alternative is
the postmodern multidimensional organisation encompassing many little nar-
ratives.

In practice, narratives may grow and shrink, reflecting the exercise of power
(especially by monopolist organisations) and the development of communities
(especially where cooperation is mutually beneficial).

Moreover, there are many kinds of narrative in programming, and systems
may have a postmodern character in some aspect but modern character in oth-
ers. For example the Microsoft Common Language Runtime [36] is postmod-
ern in that it supports a large number of programming languages — mod-
ern (C), postmodern (Perl), and historical (COBOL), high culture (Haskell) and
low (Visual Basic), with access to low-level features as necessary (a modernist
would consider this a fault). However, it is modern in that it achieves this
by enforcing a common bytecode format — indeed, a particular subset of the
format, and that it deploys the apparatus of power (verifiers, compliance kits,
bytecode type checkers, developer certification, code component certificates)
to enforce the commonality.

9

8 On Modular Components

Modularity, and interchangeable modular components are a key component of
the modernist approach in software, as in architecture, marketing, production,
and elsewhere.

Postmodernism admits modernism as one mode of expression, so modu-
lar or generated components (as with other modern techniques or tools) can
readily be used to postmodern ends.

Consider for example the Sydney Opera House. This building is now sym-
bolic of Sydney and Australia, but was originally sketched on the back of a
napkin by Jørn Utzon. The key feature of the Opera house are the shell-like
roofs above the Opera Theatre and Concert Hall (a design which is postmod-
ern because it has nothing to do with the function of the concert halls below).

The construction of the Opera House is only possible because the distinctive
shells come from a single geometric spherical section. This was not part of
the napkin design — yet according to Utzon, this “solves all the problems of
practical construction by opening up mass production” both for the tiles on
the roof, and the ribs supporting them. Without mass production of modular
components the Opera House could not have been completed.

10

9 No Metaphor

Postmodern programming rejects overarching grand narratives.
As a result, it favours descriptive reasoning rather than prescriptive. Rather

than working top down from a theory towards practice, postmodern program-
ming theories are built up, following practice. Moreover, theory follows prac-
tice on a case-by-case basis — “the world is all that is the case” [77].

Note that here we don’t necessarily mean “theory” in the mathematical
sense of theoretical computer science. Rather, we mean theory in the tradi-
tional speculative sense that serves to help us organise our experiences. For
example, theories of how best to program would include stepwise refinement,
object-orientation, and pattern languages.

Postmodern programming limits the scope of theory (and formalism) to
particular “little narratives” — conditions where that theory is applicable, or is
generated by the practice. This limits the kind of questions that will be asked
of theory, and theory’s position within the discipline as a whole.

Many metaphors have been adopted to describe programming: computer
science (hypotheses, experiments, research); software architecture (plans, build-
ing, implementing); software engineering (design, verify, construct); and we
may see programs as literature (write programs, literate programming); pro-
grams as evolutionary biology (program evolution, cellular automata); programs
as neurobiology (artificial neural networks); programs as mathematics (programs
as theorems, as proofs, as type systems).

Within modern computer science (following modern architecture, or disci-
plinary inadequacy due to the low status of computer science departments in
many universities) there is an intellectual posture that accepts metaphors from
other disciplines uncritically [65], without providing arguments as to why that
metaphor should be applicable [79]. In general, this is the result of the modern
grand narrative: computer science must conform to some theory, where that
theory is carried by metaphor: the program as proof, as bridge, as house, as
city.

Postmodern computer science tends to eschew metaphor — rather, in place
of a metaphor we have a past. This is true on both the large scale (the disci-
pline as a whole) and the small scale (individual programmers and programs).
Postmodernism is often descriptive: recording the state of the world, rather
than presenting some grand theory. Writing programs follows reading pro-
grams, because postmodern programming is extension, recovery, reuse, rather
than creating masterpieces from nothing. Theory follows practice, because we
aim to understand the world as it is, rather than remake it from scratch with a
genesis device [66].

Our view is that computer science has “come of age”. Computer Science is
sufficient for itself: albeit as an ‘unrestricted science’ from where investigators
must be prepared to follow their problems into any other science whatsoever
(Pantin, quoted by Becher & Trowler,[5, p.32]). That is, we think it sensible that
related disciplines are applied to their domains, so physics is used to address
the design of semiconductors, statistics to analyse web server performance,
accounting to study e-commerce, semiotics and psychology to drive human
interface design, or linguistics to categorise Visual Basic programs. Of course
we should be prepared to learn from many other disciplines. But the program
itself the ultimately the subject of computer science itself.

11

10 No Future

What is post-modernism? And where does it lead? How can something be
after what is modern?. Isn’t modern what we have today?

Modernism is a term used to describe a range of developments in architec-
ture, literature, philosophy, and then society generally. Postmodernism is what
comes after modernism. The question is, does postmodernism:

� replace modernism?, or

� fulfil modernism?

Inasmuch as there is an answer, it is both. (This is the standard postmodern
answer to any question. ’Tsall good). Postmodernism is a replacement for
modernism because the postmodern theories or practices replace the modern.
Postmodern architecture has replaced modern architecture; postmodern fiction
has replaced modern fiction; postmodern programming languages (Perl, late
C ���) replace modern programming languages (Pasal, ANSI C).

But postmodernism (or postmodernity, the society and culture that follows
after modernity) is simultaneously the fulfilment of modernism. Without the
technology developed by modernity, there could be no postmodernity or post-
modernism. Thus, Extreme Programming, for example, aims to replace mod-
ern and late-modern methodologies (e.g. Responsibility Driven Design or the
“Booch” methodology, and the Rational Unified Process or the OPEN process
(now deceased)) [6, 75, 7, 48, 37]. On the other hand, XP also claims to be
the fulfilment of a number of modern movements: including rigorous testing,
consistent coding and naming style, and late-modern programming languages
and environments (e.g. Smalltalk) perhaps with postmodern extensions (JU-
nit, the Refactoring Browser). Similarly, postmodern programming does not
reject but rather embraces elements that are themselves the ultimate products
of modern development.

12

11 Perl,
The First Postmodern Programming Language

What is a postmodern programming language? Or, what is a modern pro-
gramming language? The second question is easier to answer than the first: a
modern programming language supports a single (modern) style of program-
ming, based on recursive decomposition of both code and data.

Modern programming languages can themselves vary in a number of ways.
Common Lisp, APL, and Smalltalk, for example, are based on difference ap-
proaches to programming, but all are modern, and all rely on extensive sup-
port for their programming theories. Pascal, Oberon and Scheme and Self are
more minimalist counterparts, but also modern.

Larry Wall explains how his design of Perl was explicitly based on a post-
modern approach. This explanation shows how postmodernism, easily mis-
uderstood or disregarded by pragmatists, is responsible for a programming
language highly prized and defended by those same pragmatists. Wall’s rea-
soning deserves to be read in in its entirety, but the key point is that the design
was not based on any grand narrative, but on a case-by-case basis: [72].

When I started writing Perl, I’d actually been steeped in enough postmodernism
to know that that’s what I wanted to do. Or rather, that I wanted to do something
that would turn out to be postmodern, because you can’t actually do something
postmodern, you can only really do something cool that turns out to be postmod-
ern. Hmm. Do I really believe that? I dunno. Maybe. Sometimes. You may
actually find this difficult to believe, but I didn’t actually set out to write a post-
modern talk. I was just going to talk about how Perl is postmodern. But it just
kind of happened. So you get to see all the ductwork.

Anyway, back to Perl. When I started designing Perl, I explicitly set out to de-
construct all the computer languages I knew and recombine or reconstruct them
in a different way, because there were many things I liked about other languages,
and many things I disliked. I lovingly reused features from many languages. (I
suppose a Modernist would say I stole the features, since Modernists are hung up
about originality.) Whatever the verb you choose, I’ve done it over the course of
the years from C, sh, csh, grep, sed, awk, Fortran, COBOL, PL/I, BASIC-PLUS,
SNOBOL, Lisp, Ada, C++, and Python. To name a few. To the extent that Perl
rules rather than sucks, it’s because the various features of these languages ruled
rather than sucked.

Perl is a success, and there is no grand narrative for its design. However,
over time Perl is getting more modern, accumulating all the trappings of a
modern language: objects, packages, namespaces, syntax, etc. Again, this is
an example of the post-modern trait of absorbing technology from modernism
while putting it to a rather different use.

While Wall’s rationale is explicit, other languages can place a good claim
to be considered postmodern, at least in some aspects. Hypercard and Visual
Basic extend programming to include forms of multimedia and graphical user
interface (again without getting some religion: Prograph is modern in its in-
sistence on the primacy of visual syntax). Intercal must be considered as a
post-modern language (mostly for non-technical reasons).

13

PL/I could be considered post-modern, as it was designed to support For-
tran, Algol, and even COBOL programming styles, although (unlike Perl) it
attempted to bring them all within a modern unified framework. This mixed
result is involved in Dijkstra calling PL/I a fatal disease [18]:

C ��� is an interesting case. Early C ��� — C with Classes, the C ��� used in
the Design Patterns book is essentially a modern object-oriented programming
language: classes are the primarily (and only) modelling technique, no-one
seriously advocates the procedural features of a language — or rather, these
“faults in construction” are tolerated as faults within the modern narrative.
As C ��� evolves, into what we call “Late C ��� ” (templates, exceptions, dy-
namic casting) the discourses surrounding C ��� change also — leaving the
object-oriented grand narrative, and becoming postmodern, building a theory
of multi-paradigm design and programming upwards from the language fea-
tures [14, 67, 47]. While Design Patterns (as one data point of C ��� circa 1994)
has essentially no examples of C ��� free functions, by the late 2000 Late C ���

is clearly advocated as a postmodern language.
Finally, it is interesting to consider Java vs. C

�
. Both are arguably postmod-

ern languages, although less so than Perl, and with stronger streaks of mod-
ernism, especially in the one-language rhetoric surrounding Java, matched by
the CLR rhetoric surrounding C

�
. There are no significant technical differences

between the two languages — both with C ��� syntax, somewhat moderated
by the Pascal tradition, with a ersatz-Smalltalk object model and a handful of
Modula-3 thrown in for concurrency and modularity. The key reason these
languages are postmodern is that they cannot be considered against technical
criteria: comparing them is like comparing Pepsi and Coke: you don’t drink
the cola — you drink the advertising [69].

14

12 Messy Is Good

15

13 A First Example of Scrap-Heap
System Construction

In the section “No Metaphor” we will have stressed that postmodernism has
a past, and that this past is reflected in both the structure of the discipline and
the practice of programming. In particular, this past exists as a large number
of existing programs that the postmodern programmer can scavenge through
and reuse.

Instead of presenting (as a ready-made product) what we would call a
scrap-heap program, we are going to describe in detail the process of creat-
ing such a program. We do this because many programs are just there: they do
not have to be made, and the kind of programs we are particularly interested in
are those which we feel to be comfortably outside our powers of construction
and conception.

The task is to instruct a computer to print a table of the first thousand prime
numbers, 2 being considered the first prime number.

To write this program, we first connected our computer to the Internet,
downloaded some music from Napster, and then read our email. (You have
to receive email to perform a workday [11]). We received 25 pieces of email of
which 16 were advertisements for Internet pornography, administrivia, or invi-
tations to invest in Nigerian currency trades. After dealing with this email, we
typed “calculate prime numbers” into Google. This found several web sites
regarding prime numbers, and some more pornography. After a while, we
were interrupted, and so moved on to the prime number web sites. In particu-
lar, http://www.2357.a-tu.net includes the “ALGOMATH” C library for
calculating prime numbers; another site included an EXCEL macro which was
to complex to understand. Although we had not programmed in C for years,
after downloading and compiling the library (by typing make), we noticed the
documentation included the following program:

int *pointer , c=0;

if((pointer = am_primes_array(4, 3)) == NULL)
printf("not enough memory\n");

while(*(pointer+c)){
printf("%d\n",*(pointer+c));

c++;
}

return;

We cut and pasted this program into a file and compiled it several times,
having to add a few extra lines (e.g. main () {). Eventually we ran it, and in-
deed it appeared to generate three prime numbers larger than four. We edited
the parameters to am_primes_array to (2,1000), and then ran the output
through wc -l to check that it had printed 1000 numbers.

Here we have completed what we announced at the beginning of this sec-
tion, viz. “to describe in very great detail the composition process of such a
[postmodern] program”.

16

14 We’re all Devo
� The Open toolbox of techniques catalogues development practices without giv-

ing any information about how they would fit into the development lifecycle [41].
� Foote’s Big Ball of Mud pattern language can be read as advocacy, apologia, or

critique of unorganised development, a defence of postmodern programming, or
a parody of patterns in general [26]

� Perl [72]
� Usage-Centered Design deconstructs the subjects of our programs into many in-

dividual user rôles, and the intentions (desires) of those subjects into very many
essential use cases [13].

� Groves has demonstrated how the refinement calculus can describe maintenance,
modification, and refactoring, opening the way for Extreme Formalism [39].

� Scripting Languages (e.g. Tcl, Ruby, JavaScript) are designed to be only some part
of the program, and are never written in themselves [56].

� Lisp: Good News, Bad News, How to Win Big offers a last-ditch defence of late mod-
ernism: “I think there will be a next Lisp. This Lisp must be carefully designed, using
the principles for success we saw in worse-is-better.” [29].

� Dream Machines and Computer Lib present the Digital Equipment Corp. line of
computers in high postmodern style (a large-format comic-book) [53].

� Jackson’s Software Requirements & Specifications provides a (postmodern, post-
structured) dictionary of development terminology, while Problem Frames recon-
textualises his earlier Structured Design and Structured Programming Methods
as one technique amongst many [42, 43].

� The Microsoft-brand Common Language Runtime supports many different pro-
gramming languages with a common (late-modern) execution framework [36].

� The Rational Software Process — How and Why to Fake it describes why unifying
irrational processes is more rational than Unified Processes [58, 48].

� Aspect- and Subject- Oriented Programming in Aspect/J, Hyper/J, and Compo-
sition Filters breaks down the recursive structure of object-oriented programs to
introduce a multidimensional subdivision [45, 40, 1]. The Aspect Browser visu-
alises the topics of discourse within program texts [38].

� Literate programming’s continuation code sections deconstruct the rigorous re-
cursive structure of Pascal programs so that parts of procedures can be presented
in a order that suits explanation and documentation [46].

� Intentional Programming separates syntax and semantics, deconstructing lan-
guages so programs can be written in any language or style [16].

� Evolutionary computation, neural networks, and cellular automata reject large
scale descriptions in favour of local action.

� A Small Matter of Programming [52].
� Anything to do with Spreadsheets [57, 63]
� Agile Methodologies and Extreme Programming. Development proceeds incre-

mentally, customised to suit the occupational culture [12]. Note that Extreme
Programming still insists on a grand narrative, in contrast to Agile development
generally [27].

� Open Source and Mob Software development replace centralised development
by a single company with mongolian hordes of programmers giving their time
free across the internet [32, 60].

� Mr Bunny’s Big Cup O’ Java — Farmer Jake gets to places Niklaus Wirth can only
dream about [23].

� Minimal Manuals — practical, descriptive information written on cards, with no
precise ordering or overarching theory of operation [10].

17

15 Small Stories of Devotion

. . . We have the whole world
in our hands, smiles one. What the hell
are we going to do with it, laughs the other.

Small Stories of Devotion
Dinah Hawken

Gamma, Helm, Johnson and Vlissides Design Patterns remains for us, at
least, a crucial text. It’s not possible to give a single date for the start of post-
modernism in computer science — as with other postmodernisms, “it seems to
have slunk over the horizon” [64, p.158]. If pressed, we would choose OOP-
SLA 1994, where the Design Patterns book first became openly available. In a
lovely postmodern irony, the book is copyrighted 1995.

Reflecting upon Design Patterns from the distance of the best part of a decade
(an octade?) we should pause, once again to be surprised at its continued suc-
cesses, not irritated over its failures. Design Patterns has sparked a number
of imitators: many mediocre, some less so, none as successful as the original,
along with several edited collections and a multinational multiannual confer-
ence metaseries. The idea of an object-oriented design pattern, of the kind
described in the book, is now accepted throughout computer science practice,
incorporated into the libraries and documentation for emerging programming
languages such as Java and C

�
, and taught routinely in most undergraduate

programming curricula. The breadth of the authors’ vision is clear that in the
last eight years, although many patterns have been written on a variety of top-
ics, less than ten additional object-oriented design patterns have been found
that are of a piece with the original twenty-three.

There have been a number of more-or-less organised critiques of Design Pat-
terns, arguing that the patterns approach betrayed the future of modern com-
puter science (a conclusion with which we agree). The nature of this betrayal
varies, of course: some arguing that patterns remove or resist formalisation,
taking us to hell in a phenomenological handbasket [70, 22]; others that design
patterns have corrupted the Alexanderian heritage of a pattern language into
which all the patterns must fit [25, 30].

We contend that Design Patterns is postmodern precisely because it does not
fit into an overarching prescriptive narrative of design: programmers are free
to use or not use patterns as they see fit, as one of many techniques at their
disposal. This makes it easy to adopt design patterns whatever personal or
corporate philosophy you espouse. Precisely because patterns are small inde-
pendent narratives, supported by arguments made on a case-by-case basis in
favour of certain designs, it is easy to learn patterns piecemeal. The structure
of the book is essentially arbitrary, although there are a number of distinct and
subtle relationships between individual patterns [54]. Design Patterns certainly
builds on modern techniques (cohesion and coupling, modern languages such
as C ��� or Smalltalk; OMT design notation): but this is not problematic —
modern technology often ends up in the service of postmodern aesthetics.

Finally, we consider Design Patterns to be postmodern because it is con-
cerned with the practice of programmers working out their own designs, em-
bodied within the programs that they create. The focus of the book is the ar-
tifacts themselves: programs, designs, code, treated as objects of intellectual

18

study and critique. But suffused all through the text, amid the concerns for
pedagogy, efficiency, flexibility, and convincing argument, is the authors’ clear
respect for the topic of their discourses: their love of programs and program-
ming.

I think of the postmodern attitude as that of a man who loves
a very cultivated woman and knows that he cannot say to her, ‘I
love you madly’, because he knows that she knows (and that she
knows that he knows) that these words have already been written
by Barbara Cartland. Still, there is a solution. He can say, ‘As Bar-
bara Cartland would put it, I love you madly.’ At this point, hav-
ing avoided false innocence, having said clearly that it is no longer
possible to speak innocently, he will nevertheless have said what
he wanted to say to the woman: that he loves her, but he loves her
in an age of lost innocence. If the woman goes along with this, she
will have received a declaration of love all the same.

Reflections on the Name of the Rose [20]
Umberto Eco, 1985

19

References
[1] M. Aksit and A. Tripathi. Data abstraction mechanisms in SINA/ST. In OOPSLA

Proceedings, 1988.

[2] Peter Bøgh Andersen. Computer semiotics. Scandinavian Journal of Information sy-
stems, 4:3–30, 1992.

[3] Peter Bøgh Andersen. A Theory of Computer Semiotics. Cambridge University Press,
second edition, 1997.

[4] Peter Bøgh Andersen and Palle Nowack. Tangible objects — connecting infor-
mational and physical space. In Lars Qvortrup et al., editor, Virtual Space: The
Spatiality of Virtual Inhabitated 3D Worlds. Springer-Verlag, 2001.

[5] Tony Becher and Paul Trowler. Academic Tribes and Territories: Intellectual Enquiry
and the Cultures of Discipline. Open University Press, 2nd edition, 2001.

[6] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

[7] Grady Booch. Software Engineering with Ada. Benjamin Cummings, 1983.

[8] Grady Booch. Object Oriented Analysis and Design with Applications. Benjamin Cum-
mings, second edition, 1994.

[9] John Cage. Silence. Wesleyan Univ Press, 1973.

[10] John Carroll. The Nurnberg Funnel: Designing Minimalist Instruction for Practical
Computer Skill. MIT Press, 1990.

[11] Patrick Chan and Carleton Egremont III. Mr Bunny’s Internet Startup game.
Addison-Wesley, 2000.

[12] Larry L. Constantine. The Peopleware Papers. Prentice-Hall, 2001.

[13] Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Practical Guide
to the Models and Methods of Usage-Centered Design. Addison-Wesley, 1998.

[14] James O. Coplien. Multi-Paradigm Design for C ��� . Addison-Wesley, 1999.

[15] Ward Cunningham. WikiWikiWeb. http://c2.com/cgi/wiki.

[16] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[17] Edsger W. Dijkstra. Notes on structured programming. In Ole-Johan Dahl, Eds-
ger W. Dijkstra, and C. A. R. Hoare, editors, Structured Programming. Academic
Press, 1972.

[18] Edsger W. Dijkstra. How do we tell truths that might hurt? published as [19], June
1975.

[19] Edsger W. Dijkstra. How do we tell truths that might hurt? In Selected Writings on
Computing: A Personal Perspective, pages 129–131. Springer-Verlag, 1982.

[20] Umberto Eco. Reflections on the Name of the Rose. Secker & Warburg, 1985.

[21] Umberto Eco. Semiotics and the Philosophy of Language. Indiana University Press,
1986.

[22] A. H. Eden, A. Yehudai, and G. Gil. Precise specification and automatic appli-
cation of design patterns. In 1997 International Conference on Automated Software
Engineering (ASE’97), 1997.

[23] Carlton Egremont III. Mr. Bunny’s Big Cup o’ Java. Addison-Wesley, 1999.

[24] Richard Phillips Feynman. What Do You Care What Other People Think?: Further
Adventures of a Curious Character. W.W. Norton, 1988.

20

[25] Brian Foote. The show trial of the gang of four for crimes against com-
puter science. Panel at OOPSLA 1999. http://www.laputan.org/patterns/
gang-of-four.html, November 1999.

[26] Brian Foote and Joe Yoder. Big ball of mud. In Neil Harrison, Brian Foote, and
Hans Rohnert, editors, Pattern Languages of Program Design, volume 4, chapter 29,
pages 653–692. Addison-Wesley, 2000.

[27] Martin Fowler. The new methodology. http://www.martinfowler.com/
articles/newMethodology.html, November 2001.

[28] David Futrelle. Enron contra. CNN MONEY, January 2002. Jan 25th. http://
money.cnn.com/2002/01/25/techinvestor/futrelle.

[29] Richard P. Gabriel. LISP: Good news, bad news, how to win big. AI Expert, 6(6):30–
39, 1991.

[30] Richard P. Gabriel. Back to the future: Worse (still) is better! http:
//dreamsongs.com/NewFiles/ProWorseIsBetterPosition.pdf, De-
cember 2000.

[31] Richard P. Gabriel. Wither software. http://www.dreamsongs.com/
NewFiles/WhitherSoftware.pdf, March 2002.

[32] Richard P. Gabriel and Ron Goldman. Mob Software: The Erotic Life of Code. Dream-
songs Press, 2000.

[33] Richard P. Gabriel and Dave Thomas. Computing rainbow. Report of Feyerabend
Workshop, http://www.dreamsongs.com/Feyerabend/FeyerabendW4.
html, May 2001.

[34] William Gibson. Neuromancer. Ace Books, 1984.

[35] Les Goldschlager and Andrew Lister. Computer Science : A Modern Introduction.
Prentice-Hall, 1982.

[36] John Gough. Compiling for the .NET Common Language Runtime. PTR PH, 2002.

[37] Ian Graham, Brian Henderson-Sellers, and Houman Younessi. The OPEN Process
Specification. Addison-Wesley, 1997.

[38] William G. Griswold. The aspect browser. http://www.cs.ucsd.edu/users/
wgg/Software/AB/, March 2002.

[39] Lindsay Groves. Evolutionary Software Development in the Refinement Calculus. PhD
thesis, Victoria University of Wellington, 2000.

[40] Willian Harrison and Harold Ossher. Subject-oriented programming (a critique of
pure objects). In OOPSLA Proceedings, pages 411–428, 1993.

[41] Brian Henderson-Sellers, Anthony Simons, and Houman Younessi. The OPEN Tool-
box of Techniques. Addison-Wesley, 1998.

[42] Michael Jackson. Software Requirements & Specifications. ACM, 1995.

[43] Michael Jackson. Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley, 2001.

[44] Charles Jencks. The Language of Post-Modern Architecture. Academy Editions, 1987.

[45] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In ECOOP Proceedings, pages 327–
353, 2001.

[46] Donald Ervin Knuth. Literate Programming. CSLI Publications, 1992.

[47] Andrew Koenig. Idiomatic design. In Addendum to the proceedings of the 10th annual
conference on Object-oriented programming systems, languages, and applications, pages
14–19. ACM Press, 1995.

21

[48] Philipe Krutchen. The Rational Unified Process. Addison-Wesley, 1999.

[49] B. Leuf and W. Cunningham. The Wiki Way. Addison-Wesley Publication Co., 2001.

[50] Jean-François Lyotard. From the postmodern condition. In Anthony Easthope and
Kate McGowan, editors, A Critical And Cultural Reader. Allen & Unwin, 1992.

[51] Julie Mason. Auditing software raised ’red alert’. Houston Chronicle, Jan-
uary 2002. Jan 25th. http://www.chron.com/cs/CDA/printstory.hts/
business/1227548.

[52] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Comput-
ing. MIT Press, 1993.

[53] Theodor H. Nelson. Computer Lib/Dream Machines. Aperture, 1974.

[54] James Noble and Robert Biddle. Patterns as signs. In ECOOP Proceedings, 2002.

[55] James Noble, Robert Biddle, and Ewan Tempero. Metaphor and metonymy in
object-oriented design patterns. In Proceedings of Australian Computer Science Con-
ference (ACSC). Australian Computer Society, 2002.

[56] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[57] Raymond D. Panko. What we know about spreadsheet errors. Journal of End User
Computing, 10(2):15–21, Spring 1998.

[58] David L. Parnas and Paul C. Clements. A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering, 12(2):251–257, 1986.

[59] Alan Perlis. Epigrams on programming. ACM SIGPLAN Notices, 17(9), September
1982.

[60] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly & Associates, 2001.

[61] H. Robinson, P. Hall, F. Hovenden, and J. Rachel. Postmodern software develop-
ment. The Computer Journal, 31:363–375, 1998.

[62] Margaret Rose. The Post-Modern and the Post-Industrial : A Critical Analysis. Cam-
bridge University Press, 1991.

[63] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G. Green, and
G. Rothermel. Wysiwyt testing in the spreadsheet paradigm: An empirical eval-
uation. In Proceedings of the 22nd International Conference on Software Engineering,
pages 230–239, June 2000.

[64] Stuart Sim, editor. The Routledge Companion to Postmodernism. Routledge, 2001.

[65] Alan Sokal and Jean Bricmont. Intellectual Impostures. Profile Books, July 1998.

[66] Jack B. Sowards. Star trek II: the Wrath of Kahn. Motion Picture.

[67] Bjarne Stroustrup. Why C ��� is not just an object-oriented programming language.
In Addendum to the proceedings of the 10th annual conference on Object-oriented pro-
gramming systems, languages, and applications, pages 1–13. ACM Press, 1995.

[68] Antero Taivalsaari. Classes vs. prototypes: Some philosophical and historical ob-
servations. In James Noble, Antero Taivalsaari, and Ivan Moore, editors, Prototype-
Based Programming: Concepts, Languages and Applications, chapter 1. Springer-
Verlag, 1999.

[69] James B. Twitchell. twenty ADS that shook the WORLD. Three Rivers Press, 2000.

[70] Peter van Emde Boas. Resistance is futile; formal linguistic observations on design
patterns. Technical report, University of Amsterdam, 1997.

[71] Andy Wachowski and Larry Wachowski. The Matrix. Technicolor 35mm Motion
Picture, 1999.

22

[72] Larry Wall. Perl, the first postmodern computer language. http://www.wall.
org/˜larry/pm.html, Spring 1999.

[73] Nigel Wheale, editor. The Postmodern Arts : An Introductory Reader. Routledge,
1995.

[74] Winfried Wilcke. Computer architecture challenges in the next ten years. Keynote
talk to Australian Computet Science Week 2002.

[75] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice-Hall, 1990.

[76] Niklaus Wirth. Algorithms � Data Structures � Programs. Prentice-Hall, 1976.

[77] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul,
1961.

[78] Edward Yourdon and Jennifer Yourdon. Time Bomb 2000!: What the Year 2000 Com-
puter Crisis Means to You! Prentice Hall PTR, 1997.

[79] Liping Zhao and James O. Coplien. Symmetry in class and type hierarchy. In
James Noble and John Potter, editors, In Proc. Fortieth International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002), Confer-
ences in Research and Practice in Information Technology. Australian Computer
Society, 2002.

23

Copyright © 2002 Poppendieck.LLC Page 1

Principles of Lean Thinking

Mary Poppendieck
Poppendieck.LLC

7666 Carnelian Lane
Eden Prairie, MN 55346 USA

952-934-7998
mary@poppendieck.com

Abstract

In the 1980’s, a massive paradigm shift hit factories
throughout the US and Europe. Mass production and
scientific management techniques from the early 1900’s
were questioned as Japanese manufacturing companies
demonstrated that ‘Just-in-Time’ was a better paradigm.
The widely adopted Japanese manufacturing concepts
came to be known as ‘lean production’. In time, the
abstractions behind lean production spread to logistics,
and from there to the military, to construction, and to
the service industry. As it turns out, principles of lean
thinking are universal and have been applied
successfully across many disciplines.

Lean principles have proven not only to be universal,
but to be universally successful at improving results .
When appropriately applied, lean thinking is a well-
understood and well-tested platform upon which to
build agile software development practices.

Introduction

Call a doctor for a routine appointment and chances are
it will be scheduled a few weeks later. But one large
HMO in Minnesota schedules almost all patients within
a day or two of their call, for just about any kind of
medical service. A while ago, this HMO decided to
worked off their schedule backlogs by extending their
hours, and then vary their hours slightly from week to
week to keep the backlog to about a day. True, the
doctors don’t have the comforting weeks-long list of
scheduled patients, but in fact, they see just as many
patients for the same reasons as they did before. The
patients are much happier, and doctors detect medical
problems far earlier than they used to.

The idea of delivering packages overnight was novel
when Federal Express was started in 1971. In 1983, a
new company called Lens Crafters changed the basis of
competition in the eyeglasses industry by assembling
prescription glasses in an hour. The concept of

shipping products the same day they were ordered was
a breakthrough concept when LL Bean upgraded its
distribution system in the late 1980’s. Southwest
Airlines, one of the few profitable airlines these days,
saves a lot of money with its unorthodox method of
assigning seats as people arrive at the airport. Dell
maintains profitability in a cutthroat market by
manufacturing to order in less than a week. Another
Austin company builds custom homes in 30 days.

The common denominator behind these and many other
industry-rattling success stories is lean thinking. Lean
thinking looks at the value chain and asks: How can
things be structured so that the enterprise does nothing
but add value, and does that as rapidly as possible? All
the intermediate steps, all the intermediate time and all
the intermediate people are eliminated. All that’s left
are the time, the people and the activities that add value
for the customer.

Origins of Lean Thinking

Lean thinking got its name from a 1990’s best seller
called The Machine That Changed the World : The
Story of Lean Production1. This book chronicles the
movement of automobile manufacturing from craft
production to mass production to lean production. It
tells the story of how Henry Ford standardized
automobile parts and assembly techniques, so that low
skilled workers and specialized machines could make
cheap cars for the masses. The book goes on to
describe how mass production provided cheaper cars
than the craft production, but resulted an explosion of
indirect labor: production planning, engineering, and
management. Then the book explains how a small
company set its sights set on manufacturing cars for
Japan, but it could not afford the enormous investment
in single purpose machines that seemed to be required.

1 The Machine That Changed the World : The Story of Lean
Production, by Womack, James P., Daniel T. Jones, and
Daniel Roos, New York: Rawson and Associates; 1990.

Copyright © 2002 Poppendieck.LLC Page 2

Nor could it afford the inventory or large amount of
indirect labor that seemed necessary for mass
production. So it invented a better way to do things,
using very low inventory and moving decision-making
to production workers. Now this small company has
grown into a large company, and the Toyota Production
System has become known as ‘lean production’.

“The mass-producer uses narrowly skilled professionals
to design products make by unskilled or semiskilled
workers tending expensive, single-purpose machines.
These churn out standardized products at high volume.
Because the machinery costs so much and is so
intolerant of disruption, the mass-producer adds many
buffers – extra supplies, extra workers, and extra space
– to assure smooth production…. The result: The
customer gets lower costs but at the expense of variety
and by means of work methods that most employees
find boring and dispiriting.”2

Think of the centralized eyeglasses laboratory.
Remember that Sears used to take two or three weeks to
fill orders from its once-popular catalog. Recall the
long distribution channel that used to be standard in the
computer market. Think dinosaurs. Centralized
equipment, huge distribution centers and lengthy
distribution channels were created to realize economies
of scale. They are the side effects of mass-production,
passed on to other industries. What people tend to
overlook is that mass-production creates a tremendous
amount of work that does not directly add value.
Shipping eyeglasses to a factory for one hour of
processing adds more handling time by far than the
processing time to make the glasses. Adding retail
distribution to the cutthroat personal computer industry
means that a manufacturer needs six weeks to respond
to changing technology, instead of six days. Sears’
practice of building an inventory of mail orders to fill
meant keeping track of stacks of orders, not to mention
responding to innumerable order status queries and
constant order changes.

“The lean producer, by contrast, combines the
advantages of craft and mass production, while
avoiding the high cost of the former and the rigidity of
the later… Lean production is ‘lean’ because it uses
less of everything compared with mass production –
half the human effort in the factory, half the
manufacturing space, half the investment in tools, half
the engineering hours to develop a new product in half
the time. Also, it requires keeping far less than half the
inventory on site, results in many fewer defects, and

2 Womack (1990) p 13.

produces a greater and ever growing variety of
products.”3

While on a tour of a large customer, Michael Dell saw
technicians customizing new Dell computers with their
company’s ‘standard’ hardware and software. “Do you
think you guys could do this for me?” his host asked.
Without missing a beat, Dell replied, “Absolutely, we’d
love to do that.”4 Within a couple of weeks, Dell was
shipping computers with factory-installed, customer-
specific hardware and software. What took the
customer an hour could be done in the factory in
minutes, and furthermore, computers could be shipped
directly to end-users rather than making a stop in the
corporate IT department. This shortening of the value
chain is the essence of lean thinking.

Companies that re-think the value chain and find ways
to provide what their customers value with significantly
fewer resources than their competitors can develop an
unassailable competitive advantage. Sometimes
competitors are simply not able to deliver the new value
proposition. (Many have tired to copy Dell; few have
succeeded.) Sometimes competitors do not care to
copy a new concept. (Southwest Airlines has not
changed the industry’s approach to seat assignments.)
Sometimes the industry follows the leader, but it takes
time. (Almost all direct merchandise is shipped within a
day or two of receiving an order these days, but the
Sears catalog has been discontinued.)

Lean Thinking in Software Development

eBay is a company which pretty much invented ‘lean’
trading by eliminating all the unnecessary steps in the
trading value chain. In the mid 1990’s, basic eBay
software capabilities were developed by responding
daily to customer requests for improvements.5

Customers would send an e-mail to Pierre Omidyar
with a suggestion and he would implement the idea on
the site that night. The most popular features of eBay,
those which create the highest competitive advantage,
were created in this manner.

Digital River invented the software download market in
the mid 1990’s by focusing on ‘lean’ software delivery.
Today Digital River routinely designs and deploys

3 Womack (1990) p 13.

4 Direct from Dell, by Michael Dell with Catherine Fredman,
Harper Business, 1999, p 159
5 Q&A with eBay's Pierre Omidyar, Business Week Online,
December 3, 2001.

Copyright © 2002 Poppendieck.LLC Page 3

sophisticated web sites for corporate customers in a
matter of a weeks, by tying the corporation’s legacy
databases to standard front end components customized
with a ‘look and feel’ specific to each customer.

In the mid 1990’s, Microsoft implemented corporate-
wide financial, purchasing and human resource
packages linked to data warehouses which can be
accessed via web front-ends. Each was implemented
by “a handful of seasoned IT and functional experts…
(who got) the job done in the time it takes a …
committee to decide on its goals.”6

In each of these examples, the focus of software
development was on rapid response to an identified
need. Mechanisms were put in place to dramatically
shorten the time from problem recognition to software
solution. You might call it ‘Just-in-Time’ software
development.

The question is – why isn’t all software developed
quickly? The answer is – rapid development must be
considered important before it becomes a reality. Once
speed becomes a value, a paradigm shift has to take
place, changing software development practices from
the mass production paradigm to lean thinking.

If your company writes reams of requirements
documents (equivalent to inventory), spends hours upon
hours tracking change control (equivalent to order
tracking), and has an office which defines and monitors
the software development process (equivalent to
industrial engineering), you are operating with mass-
production paradigms. Think ‘lean’ and you will find a
better way.

Basic Principles of Lean Development

There are four basic principles of lean thinking which
are most relevant to software development:

The Basic Principles of Lean Development
Add Nothing But Value (Eliminate Waste)

Center On The People Who Add Value

Flow Value From Demand (Delay Commitment)

Optimize Across Organizations

6 Inside Microsoft: Balancing Creativity and Discipline,
Herbold, Robert J.; Harvard Business Review, January 2002.

Add Nothing But Value (Eliminate Waste)

The first step in lean thinking is to understand what
value is and what activities and resources are absolutely
necessary to create that value. Once this is understood,
everything else is waste. Since no one wants to
consider what they do as waste, the job of determining
what value is and what adds value is something that
needs to be done at a fairly high level. Let’s say you
are developing order tracking software. It seems like it
would be very important for a customer to know the
status of their order, so this would certainly add
customer value. But actually, if the order is in house
for less than 24 hours, the only order status that is
necessary is to inform the customer that the order was
received, and then that it has shipped, and let them
know the shipping tracking number. Better yet, if the
order can be fulfilled by downloading it on the Web,
there really isn’t any order status necessary at all.

To develop breakthroughs with lean thinking, the first
step is learning to see waste. If something does not
directly add value, it is waste. If there is a way to do
without it, it is waste. Taiichi Ohno, the mastermind of
the Toyota Production System, identified seven types of
manufacturing waste:

The Seven Wastes of Manufacturing
Overproduction

Inventory

Extra Processing Steps

Motion

Defects

Waiting

Transportation

Here is how I would translate the seven wastes of
manufacturing to software development:

The Seven Wastes of Software Development
Overproduction = Extra Features

Inventory = Requirements

Extra Processing Steps = Extra Steps

Motion = Finding Information

Defects = Defects Not Caught by Tests

Waiting = Waiting, Including Customers

Transportation = Handoffs

Copyright © 2002 Poppendieck.LLC Page 4

Extreme Programming (XP) is a set of practices which
focuses on rapid software development. It is interesting
to examine how XP works to eliminate the seven
wastes of software development:

Waste in Software
Development

How Extreme Programming
Addresses Waste

Extra Features
Develop only for today’s
stories

Requirements
Story cards are detailed only
for the current iteration

Extra Steps
Code directly from stories;
get verbal clarification directly
from customers

Finding Information
Have everyone in the same
room; customer included

Defects Not
Caught by Tests

Test first; both developer
tests and customer tests

Waiting, Including
Customers Deliver in small increments

Handoffs
Developers work directly with
customers

‘Do It Right The First Time’

XP advocates developing software for the current need,
and as more ‘stories’ (requirements) are added, the
design should be ‘refactored’7 to accommodate the new
stories. Is it waste to refactor software? Shouldn’t
developers “Do It Right the First Time?”

It is instructive to explore the origins of the slogan “Do
It Right the First Time.” In the 1980’s it was very
difficult to change a mass-production plant to lean
production, because in mass production, workers were
not expected to take responsibility for the quality of the
product. To change this, the management structure of
the plant had to change. “Workers respond only when
there exists some sense of reciprocal obligation, a sense
that management actually values skilled workers, …
and is willing to delegate responsibility to [them].”8

The slogan “Do It Right the First Time” encouraged
workers to feel responsible for the products moving
down the line, and encourage them to stop the line and
troubleshoot problems when and where they occurred.

7 Refactoring is improving the design of software without
changing functionality.

8 Womack (1990) p 99.

In the software industry, the same slogan “Do It Right
the First Time,” has been misused as an excuse to apply
mass-production thinking, not lean thinking to software
development. Under this slogan, responsibility has
been taken away from the developers who add value,
which is exactly the opposite of its intended effect.
“Do It Right the First Time” has been used as an excuse
to insert reams of paperwork and armies of analysts and
designers between the customer and the developer. In
fact, the slogan is only properly applied if it gives
developers more, not less, involvement in the results of
their work.

A more appropriate translation of such slogans as “Zero
Defects” and “Do It Right the First Time” would be
“Test First”. In other words, don’t code unless you
understand what the code is supposed to do and have a
way to determine whether the code works. A good
knowledge of the domain coupled with short build
cycles and automated testing constitute the proper way
for software developers to “Do It Right the First Time”.

Center On The People Who Add Value

Almost every organization claims it’s people are
important, but if they truly center on those who add
value, they would be able to say:

The people doing the work are the center of
Resources

Information

Process Design Authority

Decision Making Authority

Organizational Energy

In mass-production, tasks are structured so that low
skilled or unskilled workers can easily do the repetitive
work, but engineers and managers are responsible for
production. Workers are not allowed to modify or stop
the line, because the focus is to maintain volume. One
of the results of mass-production is that unskilled
workers have no incentive to volunteer information
about problems with the manufacturing line or ways to
improve the process. Maladjusted parts get fixed at the
end of the line; a poor die or improperly maintained
tool is management’s problem. Workers are neither
trained nor encouraged to worry about such things.

“The truly lean plant has two key organizational
features: It transfers the maximum number of tasks and
responsibilities to those workers actually adding value
to the car on the line, and it has in place a system for

Copyright © 2002 Poppendieck.LLC Page 5

detecting defects that quickly traces every problem,
once discovered, to its ultimate cause.”9 Simila rly in
any lean enterprise, the focus is on the people who add
value. In lean enterprises, traditional organizational
structures give way to new team-oriented organizations
which are centered on the flow of value, not on
functional expertise.

The first experiment Taiichi Ohno undertook in
developing lean production was to figure out a way to
allow massive, single-purpose stamping machines to
stamp out multiple parts. Formerly, it took skilled
machinists hours, if not days, to change dies from one
part to another. Therefore, mass production plants had
many single purpose stamping machines in which the
dies were almost never changed. Volume, space, and
financing were not available in Japan to support such
massive machines, so Ohno set about devising simple
methods to change the stamping dies in minutes instead
of hours. This would allow many parts of a car to be
made on the same line with the same equipment. Since
the workers had nothing else to do while the die was
being changed, they also did the die changing, and in
fact, the stamping room workers were involved in
developing the methods of rapid die changeover.

Ohno transferred most of the work being done by
engineers and managers in mass-production plants to
the production workers. He grouped workers in small
teams and trained the teams to do their own industrial
engineering. Workers were encouraged to stop the line
if anything went wrong, (a management job in mass-
production). Before the line was re -started, the workers
were expected to search for the root cause of the
problem and resolve it. At first the line was stopped
often, which would have been a disaster at a mass-
production plant. But eventually the line ran with very
few problems, because the assembly workers felt
responsible to find, expose, and resolve problems as
they occurred.

It is sometimes thought that a benefit of good software
engineering is to allow low skilled programmers to
produce code while a few high skilled architects and
designers do the critical thinking. With this in mind, a
project is often divided into requirements gathering,
analysis, design, coding, testing, and so on, with
decreasing skill presumably required at each step. A
‘standard process’ is developed for each step, so that
low-skilled programmers, for example, can translate
design into code simply by following the process.

9
Womack (1990) p 99. Italics in the original.

This kind of thinking comes from mass-production,
where skilled industrial engineers are expected to
design production work for unskilled laborers. It is the
antithesis of lean thinking and devalues the skills of the
developers who actually write the code as surely as
industrial engineers telling laborers how to do their jobs
devalues the skills of production workers.

Centering on the people who add value means
upgrading the skills of developers through training and
apprenticeships. It means forming teams that design
their own processes and address complete problems. It
means that staff groups and managers exist to support
developers, not to tell them what to do.

Flow Value From Demand
(Delay Commitment)

The idea of flow is fundamental to lean production. If
you do nothing but add value, then you should add the
value in as rapid a flow as possible. If this is not the
case, then waste builds up in the form of inventory or
transportation or extra steps or wasted motion. The
idea that flow should be ‘pulled’ from demand is also
fundamental to lean production. ‘Pull’ means that
nothing is done unless and until an upstream process
requires it. The effect of ‘pull’ is that production is not
based on forecast; commitment is delayed until demand
is present to indicate what the customer really wants.

Pulling from demand can be one of the easiest ways to
implement lean principles, as LL Bean and Lens
Crafters and Dell found out. The idea is to fill each
customer order immediately. In mass-production days,
filling orders immediately meant building up lots of
inventory in anticipation of customer orders. Lean
production changes that. The idea is to be able to make
the product so fast that it can be made to order. True,
Dell and Lens Crafters and LL Bean and Toyota have to
have some inventory of sub-assemblies waiting to be
turned into a finished product at a moments notice.
But it’s amazing how little inventory is necessary, if the
process to replenish the inventory is also lean. A truly
lean distribution channel only works with a really lean
supply chain coupled to very lean manufacturing.

The “batch and queue” habit is very hard to break. It
seems counterintuitive that doing a little bit at a time at
the last possible moment will give faster, better,
cheaper results. But anyone designing a control system
knows that a short feedback loop is far more effective at
maintaining control of a process than a long loop. The
problem with batches and queues is that they hide
problems. The idea of lean production is to expose

Copyright © 2002 Poppendieck.LLC Page 6

problems as soon as they arise, so they can be corrected
immediately. It may seem that lean systems are fragile,
because they have no padding. But in fact, lean
systems are quite robust, because they don’t hide
unknown, lurking problems and they don’t pretend they
can forecast the future.

In Lean Software Development, the idea is to maximize
the flow of information and delivered value. As in lean
production, maximizing flow does not mean
automation. Instead, it means limiting what has to be
transferred, and transferring that as few times as
possible over the shortest distance with the widest
communication bandwidth as late as is possible.
Handing off reams of frozen documentation from one
function to the next is a mass-production mentality. In
Lean Software Development, the idea is to eliminate as
many documents and handoffs as possible. Documents
which are not useful to the customer are replaced with
automated tests. These tests assure that customer value
is delivered both initially and in the future when the
inevitable changes are needed.

In addition to rapid, Just-in-Time information flow,
Lean Software Development means rapid, Just-in-Time
delivery of value. In manufacturing, the key to
achieving rapid delivery is to manufacture in small
batches pulled by a customer order. Similarly in
software development, the key to rapid delivery is to
divide the problem into small batches (increments)
pulled by a customer story and customer test. The
single most effective mechanism for implementing lean
production is adopting Just-in-Time, pull-from-demand
flow. Similarly, the single most effective mechanism
for implementing Lean Development is delivering
increments of real business value in short time-boxes.

In Lean Software Development, the goal is to eliminate
as many documents and handoffs as possible. The
emphasis is to pair a skilled development team with a
skilled customer team and give them the responsibility
and authority to develop the system in small, rapid
increments, driven by customer priority and feedback.

Optimize across Organizations

Quite often, the biggest barrier to adopting lean
practices is organizational. As products move from one
department to another, a big gap often develops,
especially if each department has its own set of
performance measurements that are unrelated to the
performance measurements of neighboring
departments.

For example, let’s say that the ultimate performance
measurement of a stamping room is machine
productivity. This measurement motivates the
stamping room to build up mounds of inventory to keep
the machines running at top productivity. It does not
matter that the inventory has been shown to degrade the
overall performance of the organization. As long as the
stamping room is measured primarily on machine
productivity, it will build inventory. This is what is
known as a sub-optimizing measurement, because it
creates behavior which creates local optimization at the
expense of overall optimization.

Sub-optimizing measurements are very common, and
overall optimization is virtually impossible when they
are in place. One of the biggest sub-optimizing
measurements in software development occurs when
project managers measured on earned value. Earned
value is the cost initially estimated for the tasks which
have been completed. The idea is that you had better
not have spent any more than you estimated. The
problem is, this requires a project manager to build up
an inventory of task descriptions and estimates. Just as
excess inventory in the stamping room slows down
production and degrades over time, the inventory of
tasks required for earned value calculations gets in the
way of delivering true business value and also degrades
over time. Nevertheless, if there is an earned value
measurement in place, project tasks are specified and
estimated, and earned value is measured. When it
comes to a choice between delivering business value or
earned value (and it often does), earned value usually
wins out.

 To avoid these problems , lean organizations are
usually structured around teams that maintain
responsibility for overall business value, rather than
intermediate measurements such as their ability to
speculate and pad estimates. Another approach is to
foster a keen awareness that the downstream
department is a customer, and satisfying this internal
customer is the ultimate performance measurement.

The paradigm shift that is required with lean thinking is
often hindered if the organization is not structured
around the flow of value and focused on helping the
customer pull value from the enterprise. For this
reason, software development teams are best structured
around delivering increments of business value, with all
the necessary skills on the same team (eg. customer
understanding / domain knowledge, architecture /
design, system development, database administration,
testing, system administration, etc.).

Copyright © 2002 Poppendieck.LLC Page 7

Software Development Contracts

Flow along the value stream is particularly difficult
when multiple companies are involved. Many times I
have heard the lament: “Everything you say makes
sense, but it is impossible to implement in our
environment, because we work under contracts with
other organizations.” Indeed, the typical software
development contract can be the ultimate sub-
optimizing mechanism. Standard software contracts
and supplier management practices have a tendency to
interfere with many lean principles.

Manufacturing organizations used to have the same
problem. For example, US automotive companies once
believed the best way to reduce the cost of parts in an
automobile was with annual competitive bidding. If the
only thing that is important is cheap parts, competitive
bidding may seem like the best way to achieve this
goal. However, if overall company performance is
more important, then better parts which integrate more
effectively with the overall vehicle are more valuable.
In fact, there is an direct correlation between an
automotive company’s profitability and its degree of
collaboration with suppliers.10 When Chrysler moved
from opportunistic to collaborative relationships with
its suppliers in the late 1990’s, it’s performance
improved significantly.

The software industry has some lessons to learn in the
area of contractual agreements between organizations.
It needs to learn how to structure collaborative
relationships which maximize the overall results of both
parties. A key lesson the software industry needs to
learn is how to structure contracts for incremental
deliveries that are not pre-defined in the contract, yet
assure the customer of prompt delivery of business
value appropriate to their investment. Here again, we
can learn from lean production.

Lean manufacturing organizations develop a limited
number of relationships with ‘trusted’ suppliers, and in
turn, gain the ‘trust’ of these suppliers. What does
‘trust’ mean? “Trust [is] one party’s confidence that
the other party in the exchange relationship will fulfill
its promises and commitments and will not exploit its
vulnerabilities.”11 “…trust…[is] not based on greater
interpersonal trust, but rather greater trust in the

10 Collaborative Advantage, by Jeffrey H. Dyer, Oxford
University Press; 2000, p 6.

11 Dyer (2000) p 88.

fairness, stability, and predictability of [the company’s]
routines and processes.”12

It has been the practice of legal departments writing
software contracts to put into contractual language all
of the protections necessary to keep the other side
‘honest.’ However, the transaction costs associated
with creating and monitoring such contracts are
enormous. Many contracts all but demand a waterfall
process, even if both companies believe this is not the
best approach. It’s time that the software development
industry learned the lesson of Supply Chain
Management – “Extraordinary productivity gains in the
production network or value chain are possible when
companies are willing to collaborate in unique ways,
often achieving competitive advantage by sharing
resources, knowledge, and assets…. Today
competition occurs between value chains and not
simply between companies.”13

 Summary and Conclusion

The lean production metaphor is a good one for
software development, if it is applied in keeping with
the underlying spirit of lean thinking. In the past, the
application of some manufacturing concepts to software
development (‘Do It Right the First Time’ comes to
mind) may have lacked a deep understanding of what
makes lean principles work. The underlying principles
of eliminating waste, empowering front line workers,
responding immediately to customer requests , and
optimizing across the value chain are fundamental to
lean thinking. When applied to software development,
these concepts provide a broad framework for
improving software development.

12 Dyer (2000) p 100

13 Dyer (2000) p 5

Many-to-Many Invocation:

A New Object Oriented Paradigm

for Ad Hoc Collaborative Systems

Alan Kaminsky
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
ark@cs.rit.edu

Hans-Peter Bischof
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
hpb@cs.rit.edu

July 16, 2002

Abstract

Many-to-Many Invocation (M2MI) is a new paradigm
for building collaborative systems that run in wire-
less proximal ad hoc networks of fixed and mobile
computing devices. M2MI is useful for building a
broad range of systems, including multiuser applica-
tions (conversations, groupware, multiplayer games);
systems involving networked devices (printers, cam-
eras, sensors); and collaborative middleware systems.
M2MI provides an object oriented method call ab-
straction based on broadcasting. An M2MI invoca-
tion means “Every object out there that implements
this interface, call this method.” An M2MI-based
application is built by defining one or more inter-
faces, creating objects that implement those inter-
faces in all the participating devices, and broadcast-
ing method invocations to all the objects on all the
devices. M2MI is layered on top of a new messag-
ing protocol, the Many-to-Many Protocol (M2MP),
which broadcasts messages to all nearby devices us-
ing the wireless network’s inherent broadcast nature
instead of routing messages from device to device.
M2MI synthesizes remote method invocation prox-
ies dynamically at run time, eliminating the need to
compile and deploy proxies ahead of time. As a re-
sult, in an M2MI-based system, central servers are
not required; network administration is not required;
complicated, resource-consuming ad hoc routing pro-
tocols are not required; and system development and
deployment are simplified.

Copyright c© 2002 Rochester Institute of Technology.
All rights reserved.

1 Introduction

This paper describes a new paradigm, Many-to-Many
Invocation (M2MI), for building collaborative sys-
tems that run in wireless proximal ad hoc networks of
fixed and mobile computing devices. M2MI is useful
for building a broad range of systems, including mul-
tiuser applications (conversations, groupware, mul-
tiplayer games); systems involving networked devices
(printers, cameras); wireless sensor networks; and col-
laborative middleware systems.

M2MI provides an object oriented method call ab-
straction based on broadcasting. An M2MI-based ap-
plication broadcasts method invocations, which are
received and performed by many objects in many
target devices simultaneously. An M2MI invocation
means “Everyone out there that implements this in-
terface, call this method.” The calling application
does not need to know the identities of the target de-
vices ahead of time, does not need to explicitly dis-
cover the target devices, and does not need to set
up individual connections to the target devices. The
calling device simply broadcasts method invocations,
and all objects in the proximal network that imple-
ment those methods will execute them.

As a result, M2MI offers these key advantages over
existing systems:

• M2MI-based systems do not require central
servers; instead, applications run collectively on
the proximal devices themselves.

• M2MI-based systems do not require network ad-
ministration to assign addresses to devices, set
up routing, and so on, since method invoca-
tions are broadcast to all nearby devices. Con-
sequently,

1

• M2MI is well-suited for an ad hoc networking
environment where central servers may not be
available and devices may come and go unpre-
dictably.

• M2MI-based systems do not need complicated ad
hoc routing protocols that consume memory, pro-
cessing, and network bandwidth resources. Con-
sequently,

• M2MI is well-suited for small mobile devices
with limited resources and battery life.

• M2MI simplifies system development in several
ways. By using M2MI’s high-level method call
abstraction, developers avoid having to work
with low-level network messages. Since M2MI
does not need to discover target devices explic-
itly or set up individual connections, developers
need not write the code to do all that.

• M2MI simplifies system deployment by eliminat-
ing the need for always-on application servers,
lookup services, codebase servers, and so on; by
eliminating the software that would otherwise
have to be installed on all these servers; and by
eliminating the need for network configuration.

M2MI’s key technical innovations are these:

• M2MI employs a new message broadcasting pro-
tocol, the Many-to-Many Protocol (M2MP),
which uses a fundamentally different approach
compared to existing ad hoc networking proto-
cols. Instead of routing messages from point
to point to the particular destination devices,
M2MP broadcasts messages to all nearby de-
vices, taking advantage of the wired or wireless
network’s inherent broadcast nature. Based on
the message contents, the devices then decide
whether and how to process the message.

• M2MI layers an object oriented abstraction on
top of broadcast messaging, letting the applica-
tion developer work with high-level method calls
instead of low-level network messages.

• M2MI uses dynamic proxy synthesis to create
remote method invocation proxies (stubs and
skeletons) automatically at run time — as op-
posed to existing remote method invocation sys-
tems which compile the proxies offline and which
must deploy the proxies ahead of time.

The paper is organized as follows. Section 2 de-
scribes the application domain and networking envi-
ronment at which M2MI is targeted. Section 3 de-
scribes the M2MI paradigm at a conceptual level.

Section 4 gives several examples of ad hoc collabo-
rative systems based on M2MI. Sections 5, 6, and
7 describe the architecture and design of the M2MI
software. Section 8 compares and contrasts M2MI
with related work. Section 9 discusses the current
status of M2MI and plans for further work.

2 Target Environment

M2MI’s target domain is ad hoc collaborative systems:
systems where multiple users with computing devices,
as well as multiple standalone devices like printers,
cameras, and sensors, all participate simultaneously
(collaborative); and systems where the various de-
vices come and go and so are not configured to know
about each other ahead of time (ad hoc). Examples
of ad hoc collaborative systems include:

• Multiuser applications: a chat session, a shared
whiteboard, a group appointment scheduler, a
file sharing application, or a multiplayer game.

• Applications that discover and use nearby net-
worked services: a document printing applica-
tion that finds printers wherever the user hap-
pens to be, or a surveillance application that dis-
plays images from nearby video cameras.

• Collaborative middleware systems like shared tu-
ple spaces [14, 7].

In many such collaborative systems, every device
needs to talk to every other device. Every person’s
chat messages are displayed on every person’s device;
every person’s calendar on every person’s device is
queried and updated with the next meeting time. In
contrast to applications like email or web browsing
(one-to-one communication) or webcasting (one-to-
many communication), the collaborative systems en-
visioned here exhibit many-to-many communication
patterns (Figure 1). M2MI is designed especially to
support applications with many-to-many communi-
cation patterns, although it also supports other com-
munication patterns.

M2MI is also designed to take advantage of a wire-
less proximal ad hoc networking environment. The
devices in the system connect to each other using
wireless networking technology such as IEEE 802.11
or Bluetooth. The devices are located in proximity
to each other, around the same table or in the same
room; every device can hear every other device, Con-
sequently, each transmitted message is immediately
received by all the devices without needing to route
the message through intermediate devices. Devices
come and go as the system is running, and the devices

2

One-to-one
(email, web browsing)

One-to-many
(webcasting)

Many-to-many
(chat, groupware)

Figure 1: Communication patterns

do not know each others’ identities beforehand; in-
stead, the devices form ad hoc networks among them-
selves.

M2MI is intended for running collaborative sys-
tems without central servers. In a wireless ad hoc
network of devices, relying on servers in a wired net-
work is unattractive because the devices are not nec-
essarily always in range of a wireless access point.
Furthermore, relying on any one wireless device to
act as a server is unattractive because devices may
come and go without prior notification. Instead, all
the devices — whichever ones happen to be present in
the changing set of proximal devices — act in concert
to run the system.

M2MI is intended to run in small, battery powered
devices with limited memory sizes and CPU capac-
ity. Unlike desktop computers, such devices cannot
maintain constant network connections because that
would rapidly drain their batteries. To make each
battery charge last as long as possible, reducing net-
work utilization is essential.

To reduce the amount of network traffic, M2MI
takes advantage of the broadcast communication
made possible by a wireless proximal network. In a
collaborative system with n devices where every de-
vice sends messages to every other device, if messages
had to be sent between individual devices, the num-
ber of messages would be proportional to n2. But
since M2MI uses broadcast messaging, the number of
messages sent is only proportional to n. This also

improves the scalability of M2MI, since the network
traffic tends to increase linearly rather than quadrat-
ically as more devices join an M2MI-based system.

Although M2MI is designed to work well in a lim-
ited environment of small battery-powered devices,
ad hoc wireless networks, and no central servers,
M2MI is not confined to that environment. M2MI
is perfectly capable of working in an environment of
large host computers, wired networks, and central
servers.

3 The M2MI Paradigm

Remote method invocation (RMI) [49] can be viewed
as an object oriented abstraction of point-to-point
communication: what looks like a method call is in
fact a message sent and a response sent back. In the
same way, M2MI can be viewed as an object oriented
abstraction of broadcast communication. This sec-
tion describes the M2MI paradigm at a conceptual
level.

3.1 Handles

M2MI lets an application invoke a method declared
in an interface. To do so, the application needs some
kind of “reference” upon which to perform the in-
vocation. In M2MI, a reference is called a handle,
and there are three varieties, omnihandles, unihan-
dles, and multihandles.

3.2 Omnihandles

An omnihandle for an interface stands for “every ob-
ject out there that implements this interface.” An
application can ask the M2MI layer to create an om-
nihandle for a certain interface X, called the omni-
handle’s target interface. (A handle can implement
more than one target interface if desired.) Figure 2
depicts an omnihandle for interface Foo; the omni-
handle is named allFoos. It is created by code like
this:
Foo allFoos = (Foo) M2MI.getOmnihandle

(Foo.class);

Once an omnihandle is created, calling method Y
on the omnihandle for interface X means, “Every ob-
ject out there that implements interface X, perform
method Y .” The method is actually performed by
whichever objects implementing interface X exist at
the time the method is invoked on the omnihandle.
Thus, different objects could respond to an omni-
handle invocation at different times. Figure 3 shows
what happens when the statement allFoos.y(); is
executed. Three objects implementing interface Foo,

3

Figure 2: An omnihandle

Figure 3: Invoking a method on an omnihandle

Figure 4: A unihandle

Figure 5: Invoking a method on a unihandle

objects A, B, and D, happen to be in existence at
that time; so all three objects perform method y.
Note that even though object D did not exist when
the omnihandle allFoos was created, the method is
nonetheless invoked on object D.

The target objects invoked by an M2MI method
call need not reside in the same process as the calling
object. The target objects can reside in other pro-
cesses or other devices. As long as the target objects
are in range to receive a broadcast from the calling
object over the network, the M2MI layer will find the
target objects and perform a remote method invoca-
tion on each one. (M2MI’s remote method invocation
does not, however, use the same mechanism as Java
RMI.)

3.3 Exporting Objects

To receive invocations on a certain interface X, an
application creates an object that implements inter-
face X and exports the object to the M2MI layer.
Thereafter, the M2MI layer will invoke that object’s
method Y whenever anyone calls method Y on an
omnihandle for interface X. An object is exported
with code like this:
M2MI.export (b, Foo.class);

Foo.class is the class of the target interface through
which M2MI invocations will come to the object. We
say the object is “exported as type Foo.” M2MI also
lets an object be exported as more than one target
interface.

Once exported, an object stays exported until ex-
plicitly unexported:
M2MI.unexport (b);

In other words, M2MI does not do distributed
garbage collection (DGC). In many distributed col-
laborative applications, DGC is unwanted; an object
that is exported by one device as part of a distributed
application should remain exported even if there are
no other devices invoking the object yet. In cases
where DGC is needed, it can be provided by a leas-
ing mechanism [15, 1] explicit in the interface.

3.4 Unihandles

A unihandle for an interface stands for “one particu-
lar object out there that implements this interface.”
An application can export an object and have the
M2MI layer return a unihandle for that object. Un-
like an omnihandle, a unihandle is bound to one par-
ticular object at the time the unihandle is created.
Figure 4 depicts a unihandle for object B implement-
ing interface Foo; the unihandle is named b_Foo. It
is created by code like this:

4

Figure 6: A multihandle

Figure 7: Invoking a method on a multihandle

Foo b_Foo = (Foo) M2MI.getUnihandle

(b, Foo.class);

Once a unihandle is created, calling method Y
on the unihandle means, “The particular object out
there associated with this unihandle, perform method
Y .” When the statement b_Foo.y(); is executed,
only object B performs the method, as shown in Fig-
ure 5. As with an omnihandle, the target object for
a unihandle invocation need not reside in the same
process or device as the calling object.

A unihandle can be detached from its object, after
which the object can no longer be invoked via the
unihandle:

b_Foo.detach();

3.5 Multihandles

A multihandle for an interface stands for “one partic-
ular set of objects out there that implement this in-
terface.” Unlike a unihandle which only refers to one
object, a multihandle can refer to zero or more ob-
jects. But unlike an omnihandle which automatically
refers to all objects that implement a certain target
interface, a multihandle only refers to those objects
that have been explicitly attached to the multihandle.
Figure 6 depicts a multihandle implementing target
interface Foo; the multihandle is named someFoos,
and it is attached to two objects, A and D. The mul-
tihandle is created and attached to the objects by
code like this:

Foo someFoos = (Foo) M2MI.getMultihandle

(Foo.class);

someFoos.attach (a);

someFoos.attach (d);

Once a multihandle is created, calling method
Y on the multihandle means, “The particular ob-
ject or objects out there associated with this mul-
tihandle, perform method Y .” When the statement
someFoos.y(); is executed, objects A and D per-
form the method, but not objects B or C, as shown
in Figure 7. As with an omnihandle or unihandle,
the target objects for a multihandle invocation need
not reside in the same process or device as the calling
object or each other. A multihandle can be created
in one process and sent to another process, and the
destination process can then attach its own objects
to the multihandle.

An object can also be detached from a multihandle:
someFoos.detach (a);

3.6 Characteristics of M2MI Invoca-
tions

Methods in interfaces invoked via M2MI can have ar-
guments. When an object of a non-primitive type,
including an array type, is passed directly as an
M2MI method call argument, the object is normally
passed by copy; manipulations of the argument by the
method call recipient do not affect the original object
in the caller. However, when a unihandle for an ex-
ported object is passed as an M2MI method call ar-
gument, the object is effectively passed by reference;
invocations performed by the method call recipient
on the argument (unihandle) come back to the orig-
inal object via M2MI and thus do affect the original
object in the caller. An omnihandle or multihandle
can also be passed as an M2MI method call argu-
ment, and it behaves the same way in the method
call recipient as it does in the caller. Primitive types
are always passed by copy in M2MI.

M2MI uses Java’s object serialization to marshal
the method call arguments on the calling side and un-
marshal them again on the target side. Accordingly,
every non-primitive object passed in as an M2MI
method call argument must be serializable, or the
invocation will fail.

While M2MI can pass objects as arguments like
Java RMI, M2MI does not download the argument
objects’ classes to the destination as Java RMI does.
With M2MI, the destination must already possess the
argument objects’ classes, or the invocation will fail.
If a handle is passed as an argument in an M2MI
method call, though, the destination need only pos-
sess the handle’s target interface or interfaces. (The

5

destination’s M2MI layer already possesses all the
classes needed to implement handles.)

Although they can have arguments, methods in in-
terfaces invoked via M2MI must be declared not to
return a value and not to throw any exceptions. This
is because with potentially more than one object per-
forming the method, there is no single return value
or exception to return or throw.

Since an M2MI method does not return anything,
the caller cannot get any information back from the
called object in the same method call. If the caller
needs to get information back, the caller can send a
reference to its own object by passing the object’s
unihandle as an argument to a method invoked on a
handle. The called object or objects can then send
information back by performing subsequent method
invocations on the original caller’s unihandle. This
typically leads to a pattern of asynchronous method
calls and callbacks in an M2MI-based application as
shown in the examples in Section 4; in other words,
an event-driven application.

For the same reason, an M2MI method invocation
does not give any indication of whether the invo-
cation was successfully communicated to the called
objects. If an M2MI-based application needs ac-
knowledgments that a method call in fact reached
the called objects, the called objects must do sepa-
rate method invocations back to the calling object.
However, some applications can be designed not to
need explicit method acknowledgments at all, achiev-
ing fault recovery by other means, as shown in Section
4.

Finally, M2MI invocations are non-blocking. A
method call on a handle returns immediately to the
calling object without waiting for all the target ob-
jects to execute their methods. Later, when the
method invocations are actually performed, every
method in every target object is (potentially) exe-
cuted concurrently by a separate thread. Therefore,
every object exported via M2MI must be designed to
be multiple thread safe. Furthermore, like any con-
current application, the overall M2MI-based applica-
tion must be designed to avoid deadlocks, to work
properly with any ordering of the concurrent method
calls, and so on.

4 M2MI-Based Systems

This section gives several examples showing how
M2MI can be used to design a broad range of ad
hoc collaborative systems.

Figure 8: M2MI invocations for a chat application

4.1 Chat

As a first example of an M2MI-based collaborative
system, consider a simple chat session: whenever a
user types a line of text, the line is displayed on all
the users’ devices. Each user’s chat application has
an object implementing this interface:

public interface Chat {

public void putMessage (String line);

}

The application exports the chat object to the
M2MI layer. The application also obtains from the
M2MI layer an omnihandle for interface Chat and
stores the omnihandle as allChats.

Figure 8 shows a sequence of M2MI invocations
that might occur when four instances of this chat
application run in four nearby devices. To send a
line to everyone in the chat session, the application
does a method call on the omnihandle:

allChats.putMessage ("Hello there");

The chat object’s implementation of the
putMessage method adds the line of text to
the chat session log displayed on the user’s device.
Thus, in response to the above omnihandle invoca-
tion, all the exported chat objects display the line of
text on all the users’ devices.

Note that the M2MI-based chat application does
not need to find and connect to a central chat server.
Neither does the application need to know which
other devices are part of the chat session or connect to
them. The user’s device simply shows up and starts
broadcasting putMessage invocations. This shows
how M2MI simplifies the development of collabora-
tive systems.

Appendix A gives the actual, working, extremely
simple Java code for this M2MI-based chat applica-
tion.

6

4.2 Multiple Chat Sessions

Let us add a feature to the chat application: mul-
tiple independent simultaneous chat sessions. The
user can discover which chat sessions are out there
and participate in one of them, or the user can start
a new chat session. The user then sees only the mes-
sages sent to that chat session, not all the other chat
sessions.

To see only the messages for a particular chat ses-
sion, each user’s device has a chat object implement-
ing interface Chat as before. Now, however, there is a
multihandle for interface Chat for each separate chat
session. To participate in a particular chat session,
the application attaches its chat object to the corre-
sponding multihandle. When the user types a line of
text, the application invokes putMessage on the chat
session’s multihandle. The chat object processes a
putMessage invocation exactly as before, by adding
the line of text to the chat session log. However, since
the invocation is performed on a multihandle instead
of an omnihandle, only those chat objects that have
been explicitly attached to the multihandle — that
is, only those devices participating in the chat session
— will respond.

To discover which chat sessions are out there, a
new interface is used:

public interface ChatDiscovery {

public void report (Chat session,

String name);

}

The application exports a chat discovery ob-
ject implementing interface ChatDiscovery. Each
device with an active chat session periodically
invokes report on an omnihandle for interface
ChatDiscovery, passing in the multihandle for the
chat session and the name of the chat session. Pro-
cessing each report invocation, the chat discovery
object collects the chat sessions in a list and displays
them for the user to choose.

If the user decides to participate in an existing
chat session, the application obtains the correspond-
ing chat session multihandle from the list and at-
taches the chat object to the multihandle. If the user
decides to start a new chat session, the application
creates a new chat session multihandle and attaches
the chat object to the multihandle. In either case,
the application starts calling report periodically.

Figure 9 shows a sequence of M2MI invocations
that might occur when four instances of this chat
application run in four nearby devices. Users A
and C are participating in one chat session named
"AC", while users B and D are participating in an-
other named "BD". The corresponding chat session

Figure 9: M2MI invocations for multiple chat sessions

multihandles are named chatac and chatbd. The
omnihandle for interface ChatDiscovery is named
chatDiscovery.

As long as there is at least one device participat-
ing in a particular chat session, the periodic report

invocations for that chat session will continue. When
the last participant in the chat session vanishes, the
periodic report invocations cease. If a certain chat
session (multihandle) has not been reported for some
amount of time, all the chat discovery objects in all
the devices remove that chat session from their lists.

A slight modification of the above scheme will re-
duce the network traffic. It is not necessary for ev-
ery device participating in a particular chat session
to perform report invocations for that chat session;
only one device need do so. Accordingly, each appli-
cation starts a timeout for a randomly chosen time
interval before doing the next report invocation. If
someone else calls report for the application’s chat
session before the timeout occurs, the application
merely restarts the timeout for another randomly
chosen time interval without bothering to call report
itself. But if the timeout occurs before someone else
calls report for the application’s chat session, the ap-
plication calls report and then restarts the timeout
for a randomly chosen time interval.

When a new device arrives in an area where chat
sessions are in progress, it may be some time before
other devices call report and the new device discov-
ers the existing chat sessions. To speed up the dis-
covery process, add a method to the ChatDiscovery

interface:

7

public interface ChatDiscovery {

public void request();

public void report (Chat session,

String name);

}

When the chat application starts up, or when it
notices that no one has called report for a while,
the application calls request on an omnihandle for
interface ChatDiscovery. Processing the invocation,
the chat discovery objects in the other devices re-
port their respective chat sessions by calling report

immediately rather than waiting until the next time-
out. However, to avoid a broadcast storm [35] where
all the devices start calling report, saturating the
network, only one device in each chat session should
respond. Accordingly, every chat discovery object
starts a timeout for a small nonzero random amount
of time. In each chat session, the first chat discovery
object to time out calls report. Processing that in-
vocation, the newly arrived device adds the reported
chat session to its list as usual, while the other chat
discovery objects in that chat session refrain from
calling report and restart their timeouts for the next
report, as usual.

4.3 Chat Log Recovery

Let us add another feature to the chat application.
Suppose one or more participants step out of the
room, taking their devices with them, so their devices
go out of range of the proximal wireless network and
no longer receive M2MI invocations. When the par-
ticipants step back into the room, their devices should
automatically fill in the gaps in their chat logs with
all the messages they missed while they were out of
range, as well as displaying new chat messages. In
other words, each device should synchronize its chat
log with all the other devices. Let us also assume that
each device’s chat log only needs to hold the most re-
cent n messages; once the chat log fills up with n
messages, older messages don’t need to be recovered,
and each time a new message is added, the oldest
message is deleted.

To add this feature, the chat application needs two
things: a way to detect that its chat log does not
contain all the messages that another device’s chat
log contains, and a way to obtain copies of the missing
chat messages and put them in their proper places in
the chat log.

To detect gaps in the chat log, assign a sequence
number to each chat message, and change the Chat

interface to this:

Figure 10: M2MI invocations for chat log recovery

public interface Chat {

public void putMessage (String line,

long seqnum);

}

When a device calls putMessage, it passes in the line
of text and a sequence number 1 higher than the most
recently received chat message. When a device pro-
cesses a putMessage invocation, the device records
the new message and its sequence number in the chat
log.

If two or more devices call putMessage concur-
rently, then two or more chat messages will end up
with the same sequence number. Let us defer deal-
ing with this situation until later and assume for the
moment that only one device at a time ever calls
putMessage.

If the most recently received sequence number is
k, and the chat log can hold at most n messages,
then the chat log must always contain messages num-
bered from max(1, k−n+1) to k. If, after processing
a putMessage call, a device notices it doesn’t have
all the chat messages with sequence numbers in that
range, the device must synchronize its chat log. To
let it do so, the Chat interface needs another method:

public interface Chat {

public void putMessage (String line,

long seqnum);

public void getMessage (long seqnum);

}

Figure 10 shows the sequence of M2MI invoca-
tions to synchronize the chat log in device B. (All
devices are participating in the same chat session,
and all the method invocations are performed on a
multihandle for interface Chat named chat.) Pro-
cessing a putMessage invocation, device B notices

8

it doesn’t have all the chat messages implied by the
new sequence number. So device B calls getMessage,
specifying the sequence number of one chat mes-
sage it needs. To avoid a broadcast storm, only one
device should respond. Accordingly, every device’s
getMessage method starts a timeout for a small
nonzero random amount of time. The first device
to time out calls putMessage, passing in the text of
the requested chat message and its sequence num-
ber. Executing the putMessage method, device B
records the chat message and its sequence number at
the proper place in the chat log, while the other de-
vices cancel their timeouts. Device B continues in
this way until all the gaps in its chat log are filled.

A newly arrived device must be able to determine
the most recent chat message’s sequence number,
so the device can pass the correct sequence num-
ber in subsequent putMessage invocations. If some
other device calls putMessage, that would supply the
needed information. But in case no one is calling
putMessage, the Chat interface needs a third method
to let the device request the information explicitly:

public interface Chat {

public void putMessage (String line,

long seqnum);

public void getMessage (long seqnum);

public void getLatestMessage();

}

A device calls getLatestMessage whenever there
have been no M2MI invocations in the chat ses-
sion for a certain length of time. Responding to
the getLatestMessage invocation, one of the devices
(whichever one times out first) calls putMessage,
passing in the text of the most recent chat message
and its sequence number. The requesting device now
knows the most recent sequence number and can also
start synchronizing its chat log if necessary.

As will be discussed later, the M2MI invocations
may be transported by a network protocol that is
not totally reliable, so an invocation may occasion-
ally be lost. To recover from a lost invocation, the
device starts a timeout after calling getMessage or
getLatestMessage. If putMessage is not called be-
fore the timeout, the device retries the invocation; if
a certain number of retries all time out, the device
gives up.

Now let us return to the issue of multiple chat
messages with the same sequence number, result-
ing from multiple devices calling putMessage concur-
rently. We could impose a protocol to guarantee that
every chat message gets a unique sequence number,
but that seems hopelessly complicated, especially in
an ad hoc network where devices can arrive and de-
part at any time. Instead, we’ll relax the restriction

and allow multiple chat messages to have the same
sequence number. We’ll also allow the devices to dis-
play chat messages with the same sequence number in
any order, as long as they come after the next lower
sequence number and before the next higher sequence
number.

Consequently, when responding to a getMessage

or getLatestMessage call, a device may possess
more than one chat message corresponding to the re-
quested sequence number. In that case the device
calls putMessage multiple times, with the same se-
quence number but different message texts each time.

It may also happen that the first device to re-
spond to a getMessage or getLatestMessage call
has a set of chat messages for the requested sequence
number that differs from another device’s. To handle
that case, the other devices monitor the first device’s
putMessage responses. If the other devices detect
that they would have responded differently from the
first device, the other devices also call putMessage.

Finally, it may happen that all the devices’ chat
logs have the same range of sequence numbers with
no gaps, but the chat message texts are different for
some sequence number or numbers in different de-
vices. This can happen if the devices separate into
multiple groups that are out of wireless range of each
other, the chat session continues in each separate
group, then the devices come back together again.
Since the devices’ chat logs all have the same range
of sequence numbers, nothing will trigger any device
to start a synchronization. To deal with this probably
rare case, a device occasionally forces a synchroniza-
tion by issuing a series of getMessage calls for all the
sequence numbers in the chat log.

Note that the chat application’s log synchroniza-
tion capability, intended primarily to bring newly ar-
rived devices up to speed, also serves to recover from
communication failures. If a device fails to receive
a putMessage invocation because a network message
was lost, on the next putMessage invocation the de-
vice will detect the missing sequence number and
start a synchronization. Even if the network were
totally reliable, the chat application would still need
the log synchronization capability to deal with newly
arrived devices. Therefore, it doesn’t make sense to
add a lot of code at the network layer to make network
communication totally reliable. End-to-end reliabil-
ity has to be built in at the application level [8].

4.4 Instant Messaging

As another example of an M2MI-based collaborative
system, consider a simple instant messaging (IM) sys-
tem. The IM application needs to discover which

9

Figure 11: M2MI invocations for an IM application

users are out there and send messages to individual
users (unlike the chat application which sends mes-
sages to all users in a chat session).

The interfaces for the IM application are quite
similar to those for the chat application, interface
IMDiscovery to discover users and interface IM to
send messages:

public interface IMDiscovery {

public void request();

public void report (IM user,

String name);

}

public interface IM {

public void putMessage (String line,

IM sender);

}

The IM application exports an IM object imple-
menting interface IM. But since instant messages go
to only one place, the IM object is attached to a uni-
handle (not a multihandle as in the chat application).
The IM application also exports an IM discovery ob-
ject implementing interface IMDiscovery.

Figure 11 shows a sequence of M2MI invocations
that might occur when four instances of this IM ap-
plication run in four nearby devices. Each application
announces its presence by calling report on an om-
nihandle for interface IMDiscovery, passing in the
unihandle to its own IM object and its own user’s
name. For example, user A’s application calls:

imDiscovery.report (a_IM, "A");

Executing the report method, each IM discovery ob-
ject stores the unihandle and the user name in an
internal list for later use.

To send an instant message to a particular user,
the application looks up the corresponding IM unihan-
dle in the user list and calls the putMessage method
on the unihandle, passing in the message text and
the unihandle to its own IM object (so the recipient
knows who sent the message). For example, to send
an instant message to user A, user D’s application
calls:

a_IM.putMessage ("Hello A", d_IM);

The putMessage method displays the message and
the sender on the destination device’s display. Since
the invocation is performed on a unihandle, not a
multihandle or omnihandle, only the destined user’s
IM object executes the putMessage method and dis-
plays the message; the message does not appear on
the other devices’ displays.

To show that the user is still present, each in-
stance of the IM application broadcasts a report in-
vocation periodically on an omnihandle for interface
IMDiscovery. If the time since the last report invo-
cation for a certain user (unihandle) exceeds a thresh-
old, the other IM applications conclude the user has
gone away and remove the user from their user lists.
To quickly discover which users are present, a de-
vice invokes request on an omnihandle for interface
IMDiscovery, and all the IM discovery objects re-
spond by calling report immediately.

4.5 Service Discovery — Printing

As an example of an M2MI-based system involving
standalone devices providing services, consider print-
ing. To print a document from a mobile device, the
user must discover the nearby printers and print the
document on one selected printer. Printer discovery
is a two-step process: the user broadcasts a printer
discovery request via an omnihandle invocation, then
each printer sends its own unihandle back to the user
via a unihandle invocation on the user. To print the
document, the user does an invocation on the selected
printer’s unihandle.

Specifically, each printer has a print service object
that implements this interface:

public interface PrintService {

public void print (Document doc);

}

The printer exports its print service object to the
M2MI layer and obtains a unihandle attached to the
object. The printer is now prepared to process docu-
ment printing requests.

To discover printers, there are two print discovery
interfaces:

10

public interface PrintDiscovery {

public void request

(PrintClient client);

}

public interface PrintClient {

public void report

(PrintService printer,

String name);

}

In the chat and IM applications, the participat-
ing devices all played the same roles, both making
discovery requests and generating discovery reports.
In the printing application, though, the participat-
ing devices do not play the same roles. Some devices
are clients which make discovery requests but do not
generate discovery reports; other devices are printers
which generate discovery reports but do not make dis-
covery requests. Accordingly, in the printing system
there is a separate discovery interface for each role.

The client printing application exports a print
client object implementing interface PrintClient

to the M2MI layer and obtains a unihandle at-
tached to the object. The application also obtains
from the M2MI layer an omnihandle for interface
PrintDiscovery. The application is now prepared
to make print discovery requests and process print
discovery reports.

Each printer exports a print discovery object im-
plementing interface PrintDiscovery to the M2MI
layer. The printer is now prepared to process print
discovery requests and generate print discovery re-
ports.

Figure 12 shows the sequence of M2MI invocations
that occur when the document printing application
goes to print a document with three printers nearby.
The application first calls
printDiscovery.request (theClient);

on an omnihandle for interface PrintDiscovery,
passing in the unihandle to its own print client ob-
ject. Since it is invoked on an omnihandle, this call
goes to all the printers. The application now waits
for print discovery reports.

Each printer’s request method calls
theClient.report (thePrinter,

"Printer Name");

The method is invoked on the print client unihandle
passed in as an argument. The method call argu-
ments are the unihandle to the printer’s print service
object and the name of the printer. Since it is in-
voked on a unihandle, this call goes just to the re-
questing client printing application, not to any other
print clients that may be present. After executing
all the report invocations, the printing application
knows the name of each available printer and has a

Figure 12: M2MI invocations for a print service

unihandle for submitting jobs to each printer.
Finally, after asking the user to select one of the

printers, the application calls
c_Printer.print (theDocument);

where c_Printer is the selected printer’s unihandle
as previously passed to the report method. Since it
is invoked on a unihandle, this call goes just to the
selected printer, not the other printers. The printer
proceeds to print the document passed to the print

method.
Clearly, this invocation pattern of broadcast dis-

covery request – discovery responses – service usage
can apply to any service, not just printing. It is even
possible to define a generic service discovery inter-
face that can be used to find objects that implement
any interface, the desired interface being specified as
a parameter of the discovery method invocation.

4.6 Advanced Printing

When printing a document, the user may need the
printer to have certain features — such as the ability
to print multiple copies of a document, or the ability
to staple the pages, or having a certain size of paper
loaded. Alternatively, the user may need the printer
to be in a certain state — such as not jammed, or not
too many jobs backed up in the print queue. In such
cases, the user wants to discover only the printers that
fulfill the user’s criteria, not all the printers. Further-
more, when actually printing the document, the user
wants to specify the number of copies, stapling, pa-
per size, and other characteristics of the print job in
addition to the document itself.

To accomplish this, add some methods to the
PrintDiscovery interface and to the PrintService

11

interface:

public interface PrintDiscovery {

public void request

(PrintClient client);

public void request

(PrintClient client,

Attribute attr);

public void request

(PrintClient client,

AttributeSet attrs);

}

public interface PrintService {

public void print (Document doc);

public void print (Document doc,

Attribute attr);

public void print (Document doc,

AttributeSet attrs);

}

The various printer characteristics — copies, sta-
pling, paper, printer status, print queue status, and
so on — are all represented as attributes.1 To dis-
cover printers that have, say, ISO A4 paper loaded,
the printing application invokes the second request

method instead of the first, passing in the desired
attribute:

printDiscovery.request (theClient,

MediaSize.ISO.A4);

While all the printers still execute this method in
response to the omnihandle invocation, only those
printers that match the attribute — namely, those
that have ISO A4 paper loaded — will call back to
the client. Likewise, to discover printers that support
multiple attributes, the printing application invokes
the third request method, passing in a set of the
desired attributes; only those printers that match all
the attributes will respond. Consequently, the client
becomes aware of just those printers that match the
user’s requirements.

To specify job characteristics for the actual print
job, the printing application invokes the second or
third print method instead of the first, passing in
the desired attribute or set of attributes:

c_Printer.print (theDocument,

MediaSize.ISO.A4);

This example shows that, by defining the appropri-
ate interfaces, service discovery can be tailored specif-
ically for the service.

1The Internet Printing Protocol (IPP) [19] defines a rich set
of printing attributes. For examples of Java APIs that encap-
sulate the IPP printing attributes, see the Jini Print Service
API [22] and the Java Print API [47].

4.7 File Sharing

As a final example of an M2MI-based collaborative
system, imagine a file sharing application. Each
user’s device has a number of files which the user
is willing to share. When the file sharing application
runs among a group of proximal devices, the user sees
all available shared files — that is, the union of the
sets of shared files in all the devices. If a certain
file exists on more than one device, that file shows
up only once in the application. As devices enter and
leave the proximal group, the set of shared files visible
on each device grows and shrinks. The user can get
information about any shared file, such as its name,
its type, its size, a textual annotation, a thumbnail
view, and so on. The user can also browse the con-
tents of any shared file — read a text file, view an
image file, play a sound file.

When a device leaves the proximal group, from that
device’s point of view all the shared files disappear ex-
cept for those stored on the device itself. However,
before leaving, the user can tell the file sharing appli-
cation to keep a certain file or files. The application
stores a copy of those files on the user’s device (which
does not change the set of shared files as viewed by
all the devices). Now, however, the kept files do not
disappear when the device leaves the proximal group.

An ad hoc collaborative file sharing application can
be used in many ways. Spectators in public settings
like athletic competitions, sporting events, amuse-
ment parks, and scenic places can share the digital
photos they’re all taking. A group of friends can lis-
ten to one another’s music files, or swap copies of
music files.2 Businesspeople in a meeting can share
reports, presentations, contact information, and so
on.

To detect whether the same file exists on multiple
devices without having to transfer the entire files over
the network, the file sharing application uses a one-
way hash of the file’s contents (such as an MD5 hash
[43] or SHA-1 hash [34]) to uniquely identify a file.
Meta-information about a file, such as its name or
type, is not part of the file’s contents. Thus, two
files with different names but the same contents will
have the same IDs (hashes) and will be considered
the same file.

Each file sharing application exports an object im-
plementing this interface:

public interface FileShare {

public void available (Hash[] ids);

public void requestFile (Hash id);

2Always provided, of course, that the files are legally al-
lowed to be copied.

12

Figure 13: M2MI invocations for a file sharing appli-
cation

public void reportFile (Hash id,

byte[] contents);

public void requestName (Hash id);

public void reportName (Hash id,

String name);

}

Figure 13 shows a sequence of M2MI invocations
that might occur when four instances of this file shar-
ing application run in four nearby devices. Every de-
vice periodically performs an omnihandle invocation
of the available method, passing in an array of the
IDs of the files it has to share. (The array of hashes
takes much less time to transmit than the files them-
selves.) Processing the available method, each de-
vice adds the specified IDs to its list of available IDs,
except for those already in the list. Each device also
starts or re-starts a timeout for each of the specified
IDs. If a device leaves the proximal group, the de-
vice stops doing available invocations, the IDs for
that device’s files time out (unless some other device
is reporting they’re still available), and each remain-
ing device removes those IDs from its list of available
IDs.

To find out further information about a particu-
lar file, such as its name, the device performs an
omnihandle invocation of the requestName method,
passing in the desired file’s ID. To prevent a broad-
cast storm if multiple devices possess that file, the
requestName method in each device that has the file
starts a small nonzero random timeout. The first de-
vice to time out performs an omnihandle invocation
of the reportName method, passing in the requested

file’s ID and name; the other devices if any cancel
their timeouts. The requesting device now has the file
name. Clearly, any other piece of meta-information
can be provided by adding the appropriate request

and report methods to the FileShare interface.

In the same way, to get the actual contents of a par-
ticular file, the device calls requestFile on the om-
nihandle. One of the devices possessing the file then
calls reportFile on the omnihandle, passing in the
file’s contents. Executing the reportFile method,
the requesting device can display the file, store it lo-
cally on the device (to keep the file), and so on.

Besides reducing the time needed to transmit
unique file identifiers around the network, using one-
way hashes to identify files provides a measure of se-
curity. An intruder could try to disrupt the file shar-
ing application by sending some file other than the
requested file in a reportFile invocation. However,
if the reported ID (hash) does not match the actual
hash of the reported contents, the recipient knows the
contents are not correct and can discard them. While
the intruder’s bogus reportFile invocation does con-
sume network and processing resources, it does not
cause the application to behave incorrectly.

Two things need improving in the file sharing ap-
plication presented so far. First, because all the
method invocations were performed on omnihandles,
every device received every file’s meta-information
and contents when requested by any device. In the
case of meta-information this behavior is desirable,
since every device will likely need to display the meta-
information for every shared file. In the case of file
contents this behavior is less desirable. When a de-
vice which did not request the file’s contents executes
the reportFile method in response to an omnihan-
dle invocation, the device could nonetheless capture
the file and save it for possible later use, or the de-
vice could simply do nothing. However, if not every
device is going to need the contents of every shared
file, it would be better not to send the file’s contents
to every device.

The second problem is that in the reportFile

method defined above, the entire contents of the file
was passed all at once. However, especially for a large
file, the receiving device may not have enough buffer
space to hold the entire file all at once. Also, if a
communication failure occurs while the reportFile

invocation is traveling through the network, the en-
tire contents will have to be sent again, which wastes
bandwidth.

To solve both problems, define two additional in-
terfaces, one for the device sending a file and one for
the device receiving it:

13

Figure 14: M2MI invocations for transferring a file

public interface FileSender {

public void get (long offset,

int count, FileReceiver receiver);

}

public interface FileReceiver {

public void put (long offset,

byte[] contents);

}

Also, change the interface of the reportFile method:

public interface FileShare {

public void available (Hash[] ids);

public void requestFile (Hash id);

public void reportFile (Hash id,

FileSender sender);

public void requestName (Hash id);

public void reportName (Hash id,

String name);

}

Figure 14 shows the sequence of M2MI invoca-
tions that occurs when device A gets a file from de-
vice B using the revised interfaces. Device A starts
by calling requestFile on the omnihandle, pass-
ing in the desired file ID. The device which pos-
sesses that file, B, executing requestFile, creates
a FileSender object for that file, exports the object
to the M2MI layer, and obtains a unihandle. Then
B calls reportFile on the omnihandle, passing in
the file ID and the file sender object’s unihandle. A,

executing reportFile, saves the file sender object’s
unihandle. Then A creates a FileReceiver object
for the file, exports the object to the M2MI layer,
and obtains a unihandle. Finally, A calls get on the
file sender object’s unihandle to get the first chunk
of the file. The arguments to get are the offset of
the first byte in the chunk, the number of bytes in
the chunk (a size that A can conveniently handle),
and the file receiver object’s unihandle. B, executing
get, calls put on the file receiver object’s unihandle,
passing in the starting offset of the chunk and the
contents of the chunk. A, executing put, stores the
chunk and calls get to obtain the next chunk. This
sequence of alternating get and put calls continues
until the entire file has been transferred. B signals
the end of the file by calling put with a zero-length
chunk.

To recover from communication failures, A starts
a timeout after calling get. If the chunk does not
arrive in a put call before the timeout, A retries the
get; if a number of retries all fail, A gives up.

Once the entire file has been transferred (or an un-
recoverable failure has happened), A can destroy the
file receiver object. B can destroy the file sender ob-
ject once a certain amount of time has elapsed with
no get calls.

4.8 Summary

The examples in this section have shown how objects
implementing simple interfaces, coupled with M2MI’s
ability to invoke methods on many objects at once,
can be used to build different kinds of powerful and
interesting ad hoc collaborative systems. None of the
systems required central servers; none of the systems
required knowledge of individual device addresses.
All of the systems allowed new devices to join the
collaborative group simply by showing up and start-
ing to broadcast M2MI invocations, without needing
to perform explicit discovery or group joining proto-
cols. M2MI is thus well suited to ad hoc networks of
small mobile devices.

5 M2MI Architecture

Our initial work with M2MI has focused on net-
worked collaborative systems. In this environment
of ad hoc networks of proximal mobile wireless de-
vices, M2MI is layered on top of a new network pro-
tocol, M2MP. We have implemented initial versions
of M2MP and M2MI in Java.

Figure 15 shows the overall architecture of M2MI.
When the calling object invokes a target method on
a handle, the invocation may have to be performed

14

Figure 15: M2MI Architecture

by target objects in three places: in the same pro-
cess as the calling object, in different processes in the
same device, and in different devices. The invocation
travels along different paths to the three destinations.

Each process that employs M2MI has a singleton
instance of the M2MI layer, and the M2MI layer has
an instance of the M2MP layer. When the calling
object invokes a target method on a handle, the han-
dle forwards the invocation to the M2MI layer in its
own process. The M2MI layer in turn forwards the
invocation to the appropriate objects that have been
exported to the M2MI layer in that process, if any.
No messages are sent out of the process to reach these
objects.

To reach target objects in other processes, the
M2MI layer transmits the invocation in the form of
a message (byte stream) to the M2MP layer. All
the M2MP layers in the same device share a region
of memory. The transmitting M2MP layer deposits
the invocation message into the shared memory. The
other M2MP layers each obtain a copy of the invoca-
tion message from the shared memory and pass the
message up to their respective M2MP layers. No mes-
sages are sent out of the device onto an external net-
work to reach these objects.

Before reaching the M2MI layer, however, the invo-
cation message must pass through a message filter in
the M2MP layer. Only invocation messages destined
for target objects exported in the M2MI layer in that

process will pass through the message filter; messages
destined for target objects in other processes will be
discarded.

To reach target objects in other devices, an M2MP
router in each device listens to the M2MP shared
memory and transmits each outgoing message on the
external broadcast network. The message is broad-
cast to all the devices in the proximal network. The
M2MP router also listens to the external network and
injects each incoming message into the M2MP shared
memory, whence the message is processed in the same
way as messages originating in the same device.

Thus an M2MI invocation is broadcast through the
M2MI layer to all target objects in the same process;
is broadcast through the shared memory to all target
objects in other processes in the same device; and is
broadcast through the external network to all target
objects in other devices. The M2MP message filters
weed out irrelevant messages, letting the M2MI lay-
ers devote processing resources only to the relevant
messages.

In a device that does not have multiple processes,
such as a small handheld device, the M2MI archi-
tecture is simpler. The shared memory and M2MP
router are omitted. The M2MP layer sends outgo-
ing messages directly to the external network and re-
ceives incoming messages directly from the external
network.

15

Figure 16: Creating a handle object

6 M2MI Design

This section describes the design of the M2MI layer
at a high level. The M2MI API is described in the
documentation that accompanies the M2MI software
[25].

6.1 Handles

An M2MI handle object encapsulates two pieces of
information: a list of the fully-qualified names of the
handle’s target interfaces (one or more), and a 128-bit
exported object identifier (EOID). For an omnihandle,
the EOID is a wildcard (zero). For a unihandle, the
EOID is a globally unique nonzero value that desig-
nates a single exported object. For a multihandle, the
EOID is a globally unique nonzero value that desig-
nates a particular set of exported objects.

A handle object’s class implements all of the han-
dle’s target interfaces, providing an implementation
for every method in every target interface and all su-
perinterfaces thereof. A handle object can thus be
cast to any of its target interfaces, and any method
in any target interface can be invoked on a handle
object.

When a handle object needs to be created (Figure
16), the M2MI layer first synthesizes the handle class.
The M2MI layer uses Java reflection to identify all the
target methods, creates a byte array containing a bi-
nary class file with implementations for all the target
methods, loads the class file byte array into a special
class loader, and gets back the handle class. To do

this, the M2MI layer employs the RIT Classfile Li-
brary [27], a general purpose library for synthesizing
Java class files. The M2MI layer then stores the han-
dle class in a cache. The next time a handle is needed
for the same target interfaces, the M2MI layer gets
the handle class from the cache instead of synthesiz-
ing it again. Having obtained the handle class, the
M2MI layer creates an instance of it and stores the
proper target interface names and EOID in the newly
created handle object.

An alternative to synthesizing handle classes would
be to implement handles using Java reflection’s
dynamic proxies (class java.lang.reflect.Proxy).
Measurements on several M2MI-based applications
showed, however, that the applications ran 5 to 30
percent faster when the M2MI layer was implemented
with synthesized classes than when the M2MI layer
was implemented with dynamic proxies.

6.2 Exporting Objects

An object can be exported to the M2MI layer by call-
ing M2MI.export, giving the object and the target
interface or interfaces. In response, the M2MI layer
adds the object to the interface export map, which
maps the fully-qualified name of a target interface
to a set of objects that have been exported as that
target interface. For each target interface and each
superinterface thereof, the object is added to the cor-
responding set in the interface export map. This lets
the object be invoked by an omnihandle as described
later.

An object can also be exported to the M2MI layer
by calling M2MI.getUnihandle, giving the object and
the target interface or interfaces. In response, the
M2MI layer adds the object to the interface export
map as before. The M2MI layer also adds the object
to the EOID export map, which maps an EOID to a
set of exported objects associated with that EOID.
The M2MI layer generates a new EOID, adds the
(EOID, object) mapping to the EOID export map,
and returns a unihandle for the target interfaces ini-
tialized with that EOID. This lets the object be in-
voked by that unihandle as described later, as well as
by an omnihandle. The M2MI layer will ensure that
that EOID only ever maps to one object.

Finally, an object can be exported to the M2MI
layer by first calling M2MI.getMultihandle to get a
multihandle for a certain target interface or inter-
faces, then calling attach on the multihandle giving
the object. To create a multihandle, the M2MI layer
generates a new EOID and returns a multihandle
for the target interfaces initialized with that EOID.
When an object is attached to the multihandle, the

16

M2MI layer adds the object to the set of objects asso-
ciated with the multihandle’s EOID in the EOID ex-
port map, and the M2MI layer adds the object to the
interface export map as before. This lets the object
be invoked by that multihandle as described later, as
well as by an omnihandle.

6.3 Performing an M2MI Invocation

An M2MI invocation starts when the calling object
invokes a target method in a target interface on a
handle. The target method uses Java object serial-
ization to serialize the method’s arguments, if any,
into a byte array. The target method then passes the
following information to the M2MI layer: the handle’s
EOID (initialized when the handle was created), the
fully-qualified name of the target interface, the target
method’s name, the target method’s descriptor, and
the serialized arguments (Figure 17).

The M2MI layer needs to set up method invoker ob-
jects that will ultimately perform the invocations on
the target objects. A method invoker is a Runnable

object whose run method is customized to invoke a
certain method in a certain interface. The M2MI
layer synthesizes the appropriate method invoker
class for the given target interface name, target
method name, and target method descriptor. The
M2MI layer saves the method invoker class in a cache
to be retrieved the next time a method invoker is
needed for the same target method and interface.

The M2MI layer next needs to find the target ob-
jects for the invocation that have been exported in
the M2MI layer’s process. For an omnihandle invo-
cation, the M2MI layer uses the interface export map
to map the target interface name to the set of target
objects. For a unihandle or multihandle invocation,
the M2MI layer uses the EOID export map to map
the EOID to the set of target objects.

For each target object, the M2MI layer creates an
instance of the method invoker class. The method
invoker object is initialized with a reference to the
target object and a reference to the byte array con-
taining the serialized arguments. The method invoker
object is then placed in a work queue for further pro-
cessing on a separate thread.

Finally, the M2MI layer uses the M2MP layer to
send an outgoing invocation message as detailed in
Section 7.6. The M2MP layer is responsible for
broadcasting the invocation message to other pro-
cesses and/or devices. However, if the invocation was
performed on a unihandle for an object exported in
the M2MI layer’s process, the M2MI layer does not
send an outgoing invocation message (because there
are no other target objects that need to be invoked).

Figure 17: Performing an M2MI invocation, part 1

Figure 18: Performing an M2MI invocation, part 2

17

At this point the original call on the handle returns
to the calling object.

The M2MI layer has a pool of one or more worker
threads to process the work queue (Figure 18). (The
number of worker threads needed depends on the ap-
plication and is established when the M2MI layer is
initialized.) Concurrently, a worker thread takes a
method invoker object from the head of the work
queue and calls the method invoker’s run method.
The run method deserializes the method arguments
from the byte array with which the method invoker
was initialized. The run method then invokes the
target method on the target object with which the
method invoker was initialized, passing in the dese-
rialized arguments. Once the target method returns,
the worker thread goes on to the next method invoker
in the queue, blocking if necessary until one is added
to the queue.

Since each method invoker separately deserializes
the arguments from the byte array of serialized ar-
guments, each target method gets its own copies of
the arguments separate from the original calling ob-
ject’s arguments and separate from the other target
objects’ arguments. This enforces M2MI’s argument
pass-by-copy semantics.

6.4 Serialization of Handles

A handle object can be passed as an argument in an
M2MI invocation just like any other object. How-
ever, handle objects must be treated specially dur-
ing serialization and deserialization to ensure they
work properly when reconstituted at the destination,
which might in be a different process or device from
the calling object. To do this, M2MI uses Java object
serialization’s object replacement capability [46].

Each handle class includes a writeReplace

method. When a handle is serialized, the serializa-
tion system notices the writeReplace method and
calls it. The writeReplace method returns a handle
transport object initialized with the handle’s EOID
and target interface list. The serialization system
then serializes this handle transport object rather
than the original handle.

The handle transport class includes a readResolve

method. When the handle transport object is dese-
rialized at the destination, the serialization system
notices the readResolve method and calls it. The
readResolve method tells the destination’s M2MI
layer to create a handle for the target interfaces and
EOID stored in the handle transport object. The
M2MI layer creates the handle as usual, synthesiz-
ing the handle class if necessary. The readResolve

method returns the handle, and the serialization sys-

tem returns the handle as the result of the deserializa-
tion (instead of the handle transport object). Thus,
the destination ends up with a handle for the same
target interfaces and EOID as the original handle.

7 M2MP Design

This section describes the design of the M2MP layer
at a high level. The M2MP API is described in the
documentation that accompanies the M2MI software
[25]. After describing the M2MP design, this section
also describes how the M2MI layer uses the M2MP
layer.

7.1 Assumptions

Intended particularly for the wireless proximal ad hoc
networking environment, M2MP’s design is based on
these assumptions:

• There are no device addresses. Consequently, de-
vices can enter and leave the network in an ad
hoc fashion without having to maintain any rout-
ing tables.

• Messages are broadcast to all devices. Since wire-
less radio transmissions are inherently broadcast
within a certain proximal area, at the radio level
it’s just as easy to deliver a message to all devices
as to one device.

• A message’s relevancy is determined by its con-
tents. A device decides which incoming messages
to process by examining the initial bytes of each
message.

• Message delivery is mostly reliable. Most of the
time, a message broadcast by one device is re-
ceived by all the other devices. However, on rare
occasions a message broadcast by one device is
not received by some or all of the other devices.

7.2 Outgoing Messages

When an application on one device sends an M2MP
message, the application writes a stream of bytes
with the message’s contents to the M2MP layer. The
M2MP layer breaks the byte stream into a sequence
of fragments, wraps each fragment in a packet, and
broadcasts each packet. An M2MP packet consists of
these fields:

• Message ID (4 bytes)

• Fragment number and last packet flag (4 bytes)

18

• Message fragment (N bytes)

• Checksum (2 bytes)

The maximum length of an M2MP packet is 508
bytes. This number is chosen so an M2MP packet
can be transmitted as a single datagram without frag-
mentation by various underlying transport protocols.
Thus, the maximum length of each message fragment
is 498 bytes.

To let the receiving devices reassemble packets sent
simultaneously by many transmitting devices into the
proper messages, every packet of an M2MP message
carries the same value in the message ID field. Each
device generates message IDs for successive messages
by stepping through a random permutation of the
set of 32-bit integers. Each device seeds its permuta-
tion generator with unique information including the
device’s system clock value and the device’s physi-
cal layer address (such as an Ethernet MAC address
or a Bluetooth device address). Thus, each device
generates a different permutation of the integers, and
there is a negligible probability that two devices will
generate the same message ID at the same time. In
this way, packets from different messages can be dis-
tinguished without the devices having to coordinate
with each other.

The fragments of a message are numbered starting
with 0, and the fragment number field identifies which
fragment the packet contains. The last packet flag is
0 in all packets except the last, where it is 1.

The message fragment field holds the message frag-
ment itself. Each message fragment except possibly
the last is 498 bytes long. The length of the mes-
sage fragment, N , is not carried within the packet.
Instead, the overall packet length is obtained from
the next lower protocol layer used to transport the
packet, and this determines N .

Finally, the checksum field contains a simple 16-
bit ones complement sum of the rest of the packet
and is used to detect alteration of the packet during
transit. (This checksum is unable to detect certain
kinds of attack and must be strengthened as discussed
in Section 9.1.)

7.3 Incoming Messages

To receive incoming messages, an application must
register one or more message filters with the M2MP
layer. Each message filter has a message prefix, a
fixed byte string. If an incoming message’s initial
bytes match the message prefix of a registered mes-
sage filter, the M2MP layer passes the message up
to the application that registered the message filter.
Otherwise, the M2MP layer discards the message,

and the application never sees it. An application that
uses M2MP, such as M2MI, designs the contents of
its M2MP messages to take advantage of M2MP’s
message filtering capability and weed out irrelevant
messages before they ever reach the application.

The M2MP layer processes each incoming packet
as follows. If the checksum is not correct, the packet
is discarded as corrupt. If it is the first packet of
a message (fragment number is 0), the M2MP layer
compares the message fragment to all the registered
message filters’ message prefixes using an efficient trie
search. If there is no match, the packet is discarded
as irrelevant. But if there is a match, the M2MP
layer creates a new incoming message associated with
the packet’s message ID and forwards the message to
the application that registered the matching message
filter. The application reads a stream of bytes con-
taining the message’s contents, beginning with the
message fragment in the first packet. If there are fur-
ther packets in the message (last packet flag is 0),
the M2MP layer starts a timeout to wait for the next
packet.

If an incoming packet is not the first packet of a
message (fragment number is greater than 0), the
M2MP layer looks for an in-progress message asso-
ciated with the packet’s message ID. If there is none,
the packet is discarded as irrelevant. If there is a
message in progress, but the packet’s fragment num-
ber is not the next expected fragment number, the
packet is discarded as out of sequence. Otherwise,
the M2MP layer cancels the timeout and feeds the
packet’s message fragment to the application reading
the message. If there are further packets in the mes-
sage, the M2MP layer restarts the timeout to wait for
the next packet.

If a failure occurs in the middle of a message, such
as a lost packet or a corrupted packet, the M2MP
layer will time out waiting for the packet with the ex-
pected next fragment number to arrive. If the time-
out occurs, the M2MP layer abandons the message
and signals an exception to the application reading
the message. The M2MP layer neither acknowledges
nor retransmits packets.

Retransmitting lost packets is unnecessary, and
abandoning the message is acceptable, because we
assume the proximal network is mostly reliable. Re-
covery from an occasional message loss can be done
at the application level. Indeed, the messaging layer
should not be expected to provide end-to-end delivery
or ordering guarantees [8]. This considerably simpli-
fies M2MP.

19

Figure 19: Objects in the M2MP API

7.4 M2MP API

Figure 19 shows the principal objects in the M2MP
API and the patterns of data flow among them. The
protocol object forms the core of M2MP. The channel
object interfaces the protocol core to the underlying
layer. By plugging a different channel object into the
protocol core, M2MP can be used with different un-
derlying protocols. The remaining objects interface
the rest of the application to the protocol core.

To send an M2MP message, the application cre-
ates an outgoing message object, obtains an output
stream from the outgoing message, and writes the
message’s contents to the output stream.

To receive M2MP messages, the application creates
an incoming message notifier object. The applica-
tion registers one or more message filter objects with
the incoming message notifier. The application reads
incoming message objects from the incoming mes-
sage notifier, which returns only those messages that
match one of the message filters. For each incoming
message, the application obtains an input stream and
reads the message’s contents from the input stream.

7.5 Underlying Layers

The layer shown in Figure 15 underneath the M2MP
layer is presently implemented by a channel object
that uses the Internet protocol stack in lieu of shared
memory (Figure 20). The channel wraps each out-
going M2MP packet in a UDP datagram and sends
the datagram to a designated well-known port on
the local host IP address, 127.0.0.1. Concurrently,
the channel reads UDP datagrams containing incom-
ing M2MP packets from its own separate port on
the local host IP address. A separate M2MP router
process receives datagrams from the well-known port

Figure 20: M2MP channels and M2MP router

and sends copies of them to all the channels’ ports.
Although it is a roundabout way of achieving inter-
process broadcast, this scheme can be implemented in
pure Java without needing nonportable native code
libraries or operating system kernel modifications.

Additionally, the M2MP router process sends a
copy of each datagram from a local process to an ex-
ternal network address, and concurrently receives in-
coming datagrams from an external network address
and copies them to the local processes. The external
network address can be a unicast IP address, in which
case M2MP messages are tunneled between just two
devices. Alternatively, the external network address
can be a multicast IP address, in which case M2MP
messages are broadcast to all devices that have joined
the multicast group.

Ideally, M2MP would be supported directly by the
operating system with its own protocol stack, includ-
ing a true shared memory layer, and would not have
to incur the additional overhead of the Internet pro-
tocol stack. Adding M2MP support to the operating
system kernel is an area of future work.

7.6 M2MI’s Use of M2MP

Having described the M2MP layer’s design, we can
now describe how the M2MI layer uses the M2MP
layer.

When a calling object calls a target method on a

20

handle, the M2MI layer sends an outgoing invocation
as an M2MP message, and the M2MP layer broad-
casts this message to all processes and devices. The
invocation message contains these items:

• Magic number, "M2MI" in ASCII (4 bytes)

• Hash code of the key used to find the target ob-
jects in the interface export map or EOID export
map (4 bytes)

• Target interface name (UTF-8 string)

• Target method name (UTF-8 string)

• Target method descriptor (UTF-8 string)

• Length of the serialized arguments (4 bytes)

• The serialized arguments themselves, if any

In an M2MI invocation message, the message prefix
used for message filtering consists of the first 8 bytes:
the magic number and the key’s hash code. When-
ever a target object is exported — that is, whenever a
target object is associated with a certain key in either
the interface export map or the EOID export map —
the M2MI layer registers a message filter with the
corresponding message prefix. Likewise, whenever a
target object is unexported, the M2MI layer dereg-
isters the message filter with the corresponding mes-
sage prefix. The M2MP layer’s trie data structure
allows the message prefixes to be stored and searched
efficiently even if many objects are exported.

When an incoming M2MP message containing an
M2MI invocation arrives at the M2MP layer, the
M2MP layer compares the message’s initial bytes to
the registered message prefixes. If the magic num-
ber doesn’t match, the message was not generated
by an application using M2MI, and the message can
be discarded. If the key’s hash code doesn’t match,
then the invocation is not destined for any target ob-
ject exported in this process, and the message can be
discarded.

If both the magic number and the key’s hash code
match, the M2MP layer passes the invocation mes-
sage on up to the M2MI layer. The M2MI layer skips
over the message prefix (which is there only for ef-
ficient message filtering in the M2MP layer) and ex-
tracts the target interface name, target method name,
target method descriptor, and serialized arguments.
The M2MI layer then proceeds to process the invo-
cation in exactly the same way as an invocation orig-
inating within its own process.

8 Related Work

M2MI touches on several areas of related work, in-
cluding ad hoc networking, remote method invoca-
tion, distributed systems architecture, and collabora-
tive middleware.

8.1 Ad Hoc Networking

A considerable amount of work has been done on ad
hoc networking. This work has concentrated on how
to make networking based on host addresses (such as
IP addresses) work when hosts move around and do
not stay attached to a fixed network segment. Mo-
bile IP [21], for example, is a scheme where a host
can move to a different location, obtain a temporary
IP address there, and cause traffic sent to the host’s
permanent address to be forwarded to its temporary
address. Many ad hoc routing algorithms have been
developed to route messages from source to desti-
nation through a network of point-to-point connec-
tions where the hosts (including the routers) are mo-
bile and thus the connections between hosts are con-
stantly changing [39, 23, 40, 18, 12, 13]. These rout-
ing algorithms tend to be complicated and to uti-
lize substantial memory space (code and data), CPU
time, and network bandwidth just to maintain the
routing information, in addition to what the actual
applications utilize.

Work has also been done on multicasting and
broadcasting messages in an ad hoc network. Again,
this work has focused on routing algorithms for deliv-
ering messages to certain specified hosts (multicast)
or all hosts (broadcast) through a network of point-
to-point connections, where the hosts are mobile and
the connectivity changes constantly [2, 35, 48, 31, 50].
Work has also focused on reliable multicast and
broadcast algorithms which ensure either that all
intended destinations receive each message (in the
same order, for some algorithms), or that none do
[37, 38, 9]. All these algorithms require memory
space, CPU time, and network bandwidth to main-
tain group membership and to enforce reliable mes-
sage delivery and ordering guarantees.

M2MI and M2MP take a fundamentally different
approach. Rather than trying to make address-based
networking and routing work in an ad hoc mobile
environment, M2MP eliminates the device addresses
and groups altogether. Instead, all messages go to
all devices within the proximal area (taking advan-
tage of the wireless medium’s inherent broadcast na-
ture), and each device decides based on the message’s
contents whether and how to process the message.
Also, M2MP does not guarantee reliable message de-

21

livery, error recovery being handled if necessary at
higher levels in an application-specific fashion. When
the device addresses, groups, and delivery guarantees
vanish, so do the memory space, CPU time, and net-
work bandwidth needed for the routing, group main-
tenance, and reliable delivery algorithms. This dras-
tically simplifies M2MP, making it more attractive
for small battery powered devices.

A potential problem with M2MI is a broadcast
storm [35] where one device broadcasting a message
causes other devices to broadcast messages, causing
further broadcasts, and so on, leading to contention
for the medium and diminished throughput. This
problem was observed with correlated broadcasts re-
sulting from broadcast-based flood routing. Conse-
quently, M2MI-based applications must be designed
to avoid correlated broadcasts.

8.2 Remote Method Invocation

Invocation of methods on remote objects is a well-
established technique for constructing distributed
systems, realized in distributed object systems like
CORBA [36] and Java RMI [42]. Such systems use
sending and receiving proxy objects (also called stubs
and skeletons) to translate a method call to a mes-
sage and back again. Typically, the proxy classes are
compiled ahead of time from an interface definition
file (as in CORBA) or from the actual Java interface
(as in Java RMI). The proxy classes are then installed
on all devices participating in the distributed appli-
cation. Java RMI alternatively lets proxy classes be
downloaded from a codebase server at run time, elim-
inating the need to install the proxy classes during
application deployment.

While remote method invocation is indeed useful,
existing distributed object system implementations
have two drawbacks. First, pre-compiling and de-
ploying the proxy classes in addition to the regu-
lar application classes entails additional effort and
more opportunities for making mistakes. With Java
RMI, if dynamic proxy downloading is used, a code-
base (HTTP) server must be provided, various sys-
tem properties must be set to point to the codebase
URL, and a security policy must be put in place to
permit connecting to the codebase server. Judging
from the frequent pleas for help on RMI-related mes-
sage boards, many people have trouble getting all this
set up correctly. Also, using codebase URLs is prob-
lematic in an ad hoc networking environment where
there are no predetermined host addresses and where
there may not even be any host that can act as a
codebase server.

The second drawback is that downloaded code, in-

cluding downloaded RMI proxy code, poses a major
security risk. While the Java virtual machine and
security manager defend against some kinds of at-
tacks, they do not defend against others. For exam-
ple, downloaded code can mount a denial of service
attack that crashes the system by allocating all avail-
able memory or spawning too many threads [32].

Downloaded code can be digitally signed, and the
code can be prevented from executing unless it has
a valid signature from a trusted source. However,
the signature only verifies who created the code, not
whether the code is benign. The signature may not
even verify who created the code if the signing com-
puter has been compromised [44]. Trusting down-
loaded code is especially problematic for a device that
is expected never to “crash.”

While using the same proxy-based technique as ex-
isting remote method invocation systems, with the
handles and the method invokers taking the roles
of the sending and receiving proxies, M2MI avoids
the existing systems’ deployment and security draw-
backs. By synthesizing the M2MI proxy classes di-
rectly in the devices where they are used, proxy pre-
compilation, codebase servers, and proxy class down-
loading are all eliminated. This simplifies M2MI-
based application development and deployment, es-
pecially in an ad hoc networking environment. Since
the M2MI layer synthesizes its own proxies, it can en-
sure that the proxies do only what they’re supposed
to do and not anything malicious — without needing
to place trust in a code signer.

8.3 Distributed Systems Architecture

Figure 21 shows the design centers of several dis-
tributed systems architectures compared to the de-
sign center of M2MI. Each architecture is classified
along three dimensions: whether the architecture is
based on centralized servers; whether the hosts or
devices are configured with each other’s addresses
ahead of time or discover each other dynamically at
run time; and the communication patterns among the
hosts or devices, one-to-one, one-to-many, or many-
to-many.

The client-server architecture is based on a cen-
tral server whose address (or URL) must be known
ahead of time. Most client-server systems use one-
to-one communication (e.g. email, web browsing);
some use one-to-many communication (e.g. webcast-
ing). While collaborative applications can be and
have been built using a client-server architecture, a
collaborative application’s many-to-many communi-
cation pattern doesn’t match the client-server archi-
tecture’s design center. As a result, the application

22

Figure 21: Design centers of distributed systems ar-
chitectures

tends to communicate in a “star” pattern where each
user’s device sends messages to the server and the
server then copies the messages to the other devices.
In a proximal network with a broadcast medium,
sending a separate copy of each message to each de-
vice wastes network bandwidth. Also, if the server
goes down or becomes inaccessible, the application
can no longer operate, even though the devices can
communicate with each other directly. Finally, need-
ing to know the server’s address ahead of time is prob-
lematic in an ad hoc network.

The spontaneous client-server architecture elimi-
nates the need for preconfigured addresses by provid-
ing a discovery mechanism. Jini Network Technology
[1] is a good example. A lookup service runs on one or
more server hosts. Clients and services discover the
lookup service using a multicast protocol. Services
upload their own proxy objects to the lookup service.
Clients download the desired service proxy objects
from the lookup service. Clients then invoke methods
on the service proxy objects to communicate directly
with the services. While this architecture does not
require server addresses to be known ahead of time,
applications are more complicated to develop because
they must discover and interact with the lookup ser-
vice in addition to their normal functions. Since the
architecture still relies on central servers, there’s still
a mismatch for collaborative applications. Also, Jini
in particular relies on downloaded code, which poses
a security risk as discussed earlier.

Keeping the spontaneous discovery of services
while eliminating the central servers results in a peer-
to-peer architecture. M2MI is a peer-to-peer archi-
tecture oriented around one-to-many and many-to-

many communication (although it also supports one-
to-one communication). Unlike an application in a
client-server architecture, an M2MI-based collabora-
tive application runs collectively in all the partici-
pating devices, not on a central server. Thus, an
M2MI-based application will not stop operating be-
cause a server crashed or became inaccessible. Like
a spontaneous client-server architecture, M2MI dis-
covers services dynamically rather than configuring
servers’ addresses statically. But unlike a sponta-
neous client-server architecture, M2MI has no cen-
tral lookup services, and the application does not
have to explicitly discover its partners before it can
start interacting with them. Rather, the application
just goes ahead and broadcasts M2MI method invo-
cations, and whichever partners are out there will re-
spond. This simplifies development and deployment
of M2MI-based applications.

8.4 Collaborative Middleware

A number of middleware frameworks for building col-
laborative applications in ad hoc networks of mo-
bile devices are under investigation. Some frame-
works, such as Proem [29, 30] and JXTA [24], follow a
protocol-centric paradigm in which a standard set of
message formats (nowadays typically XML-based) is
defined to let devices discover each other, exchange
data and events, and otherwise interact with each
other. Since the message formats are programming
language neutral, applications can be written in dif-
ferent languages to run on heterogeneous platforms
and still collaborate. In contrast, M2MI uses only
one message “format,” that of a method invocation,
and overlays that with an object oriented abstrac-
tion in which applications interact by calling meth-
ods in interfaces rather than by sending messages.
Since M2MI uses dynamic proxy synthesis which the
Java platform makes possible, it would be difficult
to run M2MI in a heterogeneous environment where
some devices lack a Java virtual machine. This, how-
ever, is becoming increasingly less of a restriction
as more and more devices, including handheld com-
puters, personal digital assistants (PDAs), and cell-
phones, are shipped with Java.

Other frameworks follow a data-centric paradigm.
In one.world [16], data are stored in tuples, and appli-
cations interact by reading and writing each other’s
tuples and sending each other events consisting of tu-
ples. Lime [33] is based on “transiently shared tuple
spaces” in which each device has a local tuple space,
nearby devices merge their local tuple spaces into a
shared global tuple space, and applications interact
by reading and writing tuples in the shared space.

23

Different middleware frameworks offer different
levels of abstraction. M2MI offers a low-level, method
call oriented abstraction. A shared tuple space of-
fers a high-level, data oriented abstraction. In fact,
M2MI can be used to implement various high-level
middleware frameworks. Applications can then be
implemented using the high-level middleware or us-
ing M2MI directly. M2MI simplifies the development
of high-level middleware frameworks as well as appli-
cations in a collaborative ad hoc environment.

9 Status and Future Work

The M2MI paradigm is a work in progress. The sec-
tions below describe the current status of M2MP,
M2MI, M2MI-based collaborative systems, and se-
curity in the M2MI framework. Also described are
plans for our ongoing work on M2MI.

9.1 Many-to-Many Protocol

The M2MP protocol has been defined and a proto-
type protocol stack has been written in Java. The
prototype runs on desktop hosts. The prototype
code, including a detailed description of the M2MP
packet format, is available [26]. The prototype in-
cludes several channel implementations that use UDP
datagrams to transport M2MP packets (see Section
7.5).

In our continuing work on M2MP, we plan to con-
struct several additional channel implementations.
One channel implementation, currently being devel-
oped, will transport M2MP directly over a wired
Ethernet data link layer, eliminating the unneces-
sary protocol overhead of the UDP and IP layers in
the prototype [20]. This channel implementation will
then be extended to run over a wireless (802.11) Eth-
ernet. Another channel implementation will trans-
port M2MP over Bluetooth. The implementations
will be written in Java, along with native code where
necessary, and tested on a desktop host.

Once these implementations are working, we plan
to migrate the M2MP protocol stack, including the
shared memory layer, into the Linux operating sys-
tem kernel. This will reduce the overhead and im-
prove the performance of M2MP.

The way the M2MP packet format is presently
defined, an adversary could disrupt a multi-packet
M2MP message by injecting a packet with the correct
next fragment number but a bogus message fragment.
The M2MP layer would have no way of knowing that
this packet is not authentic and would pass the bogus
data up to the application. This attack is of especial

concern in a wireless network, which is arguably eas-
ier for an intruder to access than a wired network.

To defend against a packet insertion attack, we
plan to replace the checksum with a message authen-
tication code (MAC), which is a one-way hash of the
packet’s contents that requires a key to compute or
verify. Each packet uses a different randomly-chosen
key. The key needed to verify a packet’s MAC is car-
ried in the next packet; a final empty packet carries
the last key. To conduct a packet insertion attack,
an adversary would have to determine the key from a
packet’s contents and MAC, so as to put the correct
key in the next packet; but this is computationally
infeasible. An initial version of this scheme has been
implemented [4].

9.2 Many-to-Many Invocation

An initial prototype of M2MI has been written in
Java. The prototype runs on desktop hosts. The
prototype code is available [25]. The M2MI proto-
type uses the M2MP prototype [26] for messaging
and the RIT Classfile Library [27] for dynamic proxy
synthesis. It builds on an earlier prototype that used
an offline proxy compiler [5].

In our continuing work on M2MI, we plan to port
the RCL, M2MP protocol core, M2MP channel, and
M2MI implementations to a PDA platform with Java
capability and 802.11 or Bluetooth wireless connec-
tivity. The porting effort may require redesigning
and reimplementing the software to reduce the mem-
ory and CPU requirements to a level suitable for a
small mobile wireless device. Once ported, we plan
to test interoperation of M2MP and M2MI from PDA
to desktop host and from PDA to PDA.

We also plan to develop tools to help develop and
debug M2MI-based systems and to monitor and vi-
sualize M2MI-based systems during operation.

9.3 M2MI-Based Systems

Initial prototypes of several collaborative applica-
tions, including chat, IM, whiteboard, calendar, file
sharing, and tuple space, have been constructed using
M2MI. The prototypes run on desktop hosts.

From our initial investigations we are getting an
inkling of a general paradigm for building collabo-
rative systems using M2MI. Some elements of the
paradigm are perceptible, such as participant discov-
ery (see Sections 4.2 and 4.4), service discovery (see
Section 4.5), multiple simultaneous groups (see Sec-
tion 4.2), random selection of respondents to avoid
broadcast storms (see Sections 4.3 and 4.7), and time-
outs to recover from missing responses.

24

We plan to build up experience with and to cod-
ify the M2MI paradigm by developing a number of
M2MI-based collaborative systems. The systems we
plan to develop include:

• Full-featured chat and instant messaging, en-
abling spontaneous conversations in quiet spaces
like libraries and museums

• Full-featured collaborative groupware, including
presentation, shared whiteboard, note taking,
document authoring by multiple simultaneous
authors, file and information sharing, and cal-
endar scheduling features

• Specialized applications for communication in
noisy environments such as engine rooms, air-
fields, flight decks, meeting halls, and restau-
rants

• Multiplayer games

• Document system utilizing dynamically discov-
ered print services, allowing users to find nearby
printers and print from their devices wherever
they happen to be

• Surveillance system utilizing dynamically discov-
ered video cameras, allowing users to display im-
ages from nearby cameras wherever they happen
to be

• Lightweight shared tuple space middleware
framework like that of Lime [33]

Each system will be tested on a mixture of desktop
and PDA platforms with wired and wireless connec-
tivity.

As we gain experience building M2MI-based sys-
tems we plan to flesh out the collaborative system
paradigm, devise reusable design patterns, and con-
struct class libraries for building collaborative sys-
tems using the paradigm.

9.4 M2MI Security

Providing security within M2MI-based systems is an
area for future work. As a starting point, we have
identified these general security requirements:

• Confidentiality — Intruders who are not part of
a collaborative system must not be able to un-
derstand the contents of the M2MI invocations.

• Participant authentication — Intruders who are
not authorized to participate in a collaborative
system must not be able to perform M2MI invo-
cations in that system.

• Service authentication — Intruders must not be
able to masquerade as legitimate participants in
a collaborative system and accept M2MI invoca-
tions. For example, a client must be assured that
a service claiming to be a certain printer really
is the printer that is going to print the client’s
job and not some intruder.

While existing techniques for achieving confiden-
tiality and authentication work well in an environ-
ment of fixed hosts, wired networks, and central
servers, it is not clear which techniques would work
well in an environment of mobile devices, wireless net-
works, and no central servers.

Consider, for example, an M2MI-based chat ap-
plication that supports closed sessions where only
certain users are allowed to participate. To achieve
confidentiality, all the M2MI invocations can be en-
crypted using a key known only to the chat session
members. Ideally, a user should be able to arrive
where a closed chat session is taking place, prove that
he or she is a member of the group (authentication),
obtain the encryption key being used at that time
(session key exchange), and start participating in the
session. However, authentication and session key ex-
change systems such as Kerberos [28] rely on central
servers that may not be available in an ad hoc device
environment.

Building blocks such as the following may be more
attractive for M2MI-based applications. Public key
exchange protocols, such as Diffie-Hellman key ex-
change [10], do not require a central server. How-
ever, the parties in the exchange must be authenti-
cated to prevent intruder-in-the-middle attacks. Au-
thentication schemes based on zero-knowledge proofs
of identity [11, 17, 41, 45] also do not require inter-
acting with a central server. Furthermore, server-
less techniques for proving group membership rather
than individual identity, such as one-way accumula-
tors [3], eliminate the need to maintain group mem-
bership lists on all devices and so may be more at-
tractive in an ad hoc networking environment where
all devices are not present all the time. Variations of
such schemes based on elliptic curves are especially
attractive for small devices, since to obtain a given
level of security elliptic curve based algorithms typ-
ically require much less storage and processing than
algorithms based on integers in a finite field [6].

To begin our investigation of M2MI security, we
plan to conduct a literature search to identify cryp-
tographic algorithms for achieving confidentiality and
authentication that are suited for an environment
of mobile devices, wireless networks, and no central
servers. Where the existing algorithms are not well

25

suited for that environment, we will define modified
cryptographic algorithms that are better suited. To
reduce memory and processing requirements in small
devices, we will define elliptic curve based variants
of the cryptographic algorithms where necessary. Fi-
nally, we will analyze how to extend the M2MI in-
frastructure to provide confidentiality and authenti-
cation.

10 Acknowledgments

Jim Waldo inspired the idea for M2MI when he said
“Everyone that’s out there, call this method” during
a discussion about M2MP. Wendi Heinzelman sug-
gested the digital photo sharing application in Sec-
tion 4.7.

The following students at the Rochester Institute
of Technology have helped us investigate the M2MI
infrastructure and have built prototype M2MI-based
applications: Adam Bazinet, Joseph Binder, Steve
Button, Tom Chang, Dan Clark, Jonathan Coles,
Frank Conover, Louie Gosselin, Kiran Hegde, John
King, Brian Koponen, Kevin Mooney, Jeffrey My-
ers, Ravi Nareppa, Jim Papapanu, Tri Phan, Jacob
Rigby, Girish Sarma, Anthony Stamp, Evan Teran,
Hau San Si Tou, Ken VanderVeer, Merit Wilkinson,
and Josh Zatulove.

We would like to thank Jeffrey Lasky, Amy Mur-
phy, and the anonymous referees for their comments
on earlier drafts of this paper.

This research was supported by grants from Sun
Microsystems and Xerox Corporation.

References

[1] K. Arnold, B. O’Sullivan, R. W. Scheifler,
J. Waldo, and A. Wollrath. The Jini Specifi-
cation. Addison-Wesley, 1999.

[2] S. Basagni, D. Bruschi, and I. Chlamtac.
A mobility-transparent deterministic broadcast
mechanism for ad hoc networks. IEEE/ACM
Transactions on Networking, 7(6):799–807, De-
cember 1999.

[3] J. Benaloh and M. de Mare. One-way accumu-
lators: A decentralized alternative to digital sig-
natures. In Advances in Cryptology — EURO-
CRYPT ’93, Proceedings of the Workshop on the
Theory and Application of Cryptographic Tech-
niques, pages 274–285, May 1993.

[4] J. Binder, J. King, K. Mooney, and M. Wilkin-
son. Ad hoc wireless networks security system

summary. Research seminar class project report,
Rochester Institute of Technology, Rochester,
NY, May 2002.

[5] H.-P. Bischof. Many-to-Many Invocation
Compiler. http://www.cs.rit.edu/~anhinga/
downloads/historical.shtml.

[6] I. Blake, G. Seroussi, and N. Smart. Elliptic
Curves in Cryptography. Cambridge University
Press, 1999.

[7] N. Carriero and D. Gelernter. How to Write
Parallel Programs: A First Course. MIT Press,
1990.

[8] D. R. Cheriton and D. Skeen. Understand-
ing the limitations of causally and totally or-
dered communication. In Proceedings of the 14th
ACM Symposium on Operating Systems Princi-
ples, pages 44–57, December 1993.

[9] D. M. Chiu, M. Kadansky, J. Provino, J. Wesley,
H.-P. Bischof, and H. Zhu. A congestion control
algorithm for tree-based reliable multicast pro-
tocols. Technical Report TR-2001-97, Sun Mi-
crosystems, June 2001. http://research.sun.
com/nova/cgi-bin/smli_tr-2001-97.pdf.

[10] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Informa-
tion Theory, IT-22(6):644–654, November 1976.

[11] U. Feige, A. Fiat, and A. Shamir. Zero knowl-
edge proofs of identity. Journal of Cryptology,
1(2):77–94, 1988.

[12] J. J. Garcia-Luna-Aceves and M. Spohn.
Bandwidth-efficient link-state routing in wireless
networks. In C. E. Perkins, editor, Ad Hoc Net-
working, pages 323–350. Addison-Wesley, 2001.

[13] J. J. Garcia-Luna-Aceves and M. Spohn.
Transmission-efficient routing in wireless net-
works using link-state information. Mobile
Networks and Applications, 6(3):223–238, June
2001.

[14] D. Gelernter. Generative communication in
Linda. ACM Transactions on Programming Lan-
guages and Systems, 7(1):80–112, January 1985.

[15] C. Gray and D. Cheriton. Leases: An effi-
cient fault-tolerant mechanism for distributed
file cache consistency. In Proceedings of the 12th
ACM Symposium on Operating Systems Princi-
ples, pages 202–210, 1989.

26

[16] R. Grimm, J. Davis, E. Lemar, A. MacBeth,
S. Swanson, S. Gribble, T. Anderson, B. Ber-
shad, G. Borriello, and D. Wetherall. Program-
ming for pervasive computing environments.
Technical Report UW-CSE-01-06-01, University
of Washington, Department of Computer Sci-
ence and Engineering, June 2001. http://one.

cs.washington.edu/papers/tr01-06-01.pdf.

[17] L. Guillou and J. Quisquater. A practical zero-
knowledge protocol fitted to security micropro-
cessor minimizing both transmission and mem-
ory. In Advances in Cryptology — EURO-
CRYPT ’88, Proceedings of the Workshop on the
Theory and Application of Cryptographic Tech-
niques, pages 123–128, May 1988.

[18] Z. J. Haas and M. R. Pearlman. ZRP: a hybrid
framework for routing in ad hoc networks. In
C. E. Perkins, editor, Ad Hoc Networking, pages
221–253. Addison-Wesley, 2001.

[19] T. Hastings, R. Herriot, R. deBry, S. Isaacson,
and P. Powell. Internet Printing Protocol/1.1:
Model and Semantics. Internet Request for Com-
ments (RFC) 2911, September 2000.

[20] K. Hegde. M2MP over Ethernet. Master’s thesis,
Rochester Institute of Technology, Rochester,
NY, 2002. In progress.

[21] Internet Engineering Task Force. IP Rout-
ing for Wireless/Mobile Hosts (mobileip) Work-
ing Group. http://www.ietf.org/html.

charters/mobileip-charter.html.

[22] Jini Printing Working Group, A. Kaminsky, ed-
itor. Jini Print Service API Draft Standard 1.0.
http://print.jini.org/, May 2000.

[23] D. B. Johnson, D. A. Maltz, and J. Broch.
DSR: the Dynamic Source Routing protocol for
multihop wireless ad hoc networks. In C. E.
Perkins, editor, Ad Hoc Networking, pages 139–
172. Addison-Wesley, 2001.

[24] Project JXTA. http://www.jxta.org/.

[25] A. Kaminsky. Many-to-Many Invocation Li-
brary. http://www.cs.rit.edu/~anhinga/

m2mi.shtml.

[26] A. Kaminsky. Many-to-Many Protocol Li-
brary. http://www.cs.rit.edu/~anhinga/

m2mp.shtml.

[27] A. Kaminsky. RIT Classfile Library. http://

www.cs.rit.edu/~anhinga/rcl.shtml.

[28] J. Kohl and C. Neuman. The Kerberos network
authentication service (v5). Internet Request for
Comments (RFC) 1510, September 1993.

[29] G. Kortuem, S. Fickas, and Z. Segall. Archi-
tectural issues in supporting ad-hoc collabora-
tion with wearable computers. In Proceedings
of the Workshop on Software Engineering for
Wearable and Pervasive Computing at the 22nd
International Conference on Software Engineer-
ing, June 2000. http://www.cs.washington.

edu/sewpc/papers/kortuem.pdf.

[30] G. Kortuem, J. Schneider, D. Preuitt, T. G. C.
Thompson, S. Fickas, and Z. Segall. When peer-
to-peer comes face-to-face: Collaborative peer-
to-peer computing in mobile ad hoc networks.
In Proceedings of the 2001 International Con-
ference on Peer-to-Peer Computing (P2P2001),
August 2001. http://www.cs.uoregon.edu/

research/wearables/Papers/p2p2001.pdf.

[31] S.-J. Lee, W. Su, and M. Gerla. Wireless ad hoc
multicast routing with mobility prediction. Mo-
bile Networks and Applications, 6(4):351–360,
August 2001.

[32] G. McGraw and E. W. Felten. Securing Java:
Getting Down to Business with Mobile Code.
John Wiley & Sons, 1999.

[33] A. L. Murphy, G. P. Picco, and G.-C. Roman.
Lime: A middleware for physical and logical
mobility. In Proceedings of the International
Conference on Distributed Computing Systems
(ICDCS’01), pages 524–533, April 2001.

[34] National Institute of Standards and Technology.
Digital signature standard. NIST FIPS PUB
186, May 1994.

[35] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P.
Sheu. The broadcast storm problem in a mobile
ad hoc network. In Proceedings of the 5th An-
nual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom
’99), pages 151–162, August 1999.

[36] Object Management Group. The common object
request broker: Architecture and specification,
revision 2.4.1, November 2000.

[37] E. Pagani and G. P. Rossi. Reliable broadcast
in mobile multihop packet networks. In Proceed-
ings of the 3rd Annual ACM/IEEE International
Conference on Mobile Computing and Network-
ing (MobiCom ’97), pages 34–42, September
1997.

27

[38] E. Pagani and G. P. Rossi. Providing reliable
and fault tolerant broadcast delivery in mobile
ad-hoc networks. Mobile Networks and Applica-
tions, 4(3):175–192, October 1999.

[39] C. E. Perkins and P. Bhagwat. DSDV routing
over a multihop wireless network of mobile com-
puters. In T. Imielinski and H. F. Korth, editors,
Mobile Computing, pages 183–206. Kluwer Aca-
demic Publishers, 1996.

[40] C. E. Perkins and E. M. Royer. The ad hoc
on-demand distance-vector protocol. In C. E.
Perkins, editor, Ad Hoc Networking, pages 173–
219. Addison-Wesley, 2001.

[41] J. Quisquater, L. Guillou, and T. Berson. How
to explain zero-knowledge protocols to your chil-
dren. In Advances in Cryptology — EURO-
CRYPT ’89, Proceedings of the Workshop on the
Theory and Application of Cryptographic Tech-
niques, pages 628–631, April 1989.

[42] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat.
Pickling state in the Java system. Computing
Systems, 9(4):291–312, Fall 1996.

[43] R. Rivest. The MD5 message-digest algorithm.
Internet Request for Comments (RFC) 1321,
April 1992.

[44] B. Schneier. Why digital signatures are
not signatures. http://www.counterpane.com/
crypto-gram-0011.html, November 2000.

[45] C. Schnorr. Efficient signature generation for
smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

[46] Sun Microsystems. Java Object Serialization
Specification. http://java.sun.com/j2se/1.

4/docs/guide/serialization/index.html.

[47] Sun Microsystems. Java Print Service Specifica-
tion. http://java.sun.com/j2se/1.4/docs/

guide/jps/index.html.

[48] J. E. Wieselthier, G. D. Nguyen, and
A. Ephremides. Algorithms for energy-efficient
multicasting in static ad hoc wireless networks.
Mobile Networks and Applications, 6(3):251–
263, June 2001.

[49] A. Wollrath, R. Riggs, and J. Waldo. A dis-
tributed object model for the Java system. Com-
puting Systems, 9(4):265–290, Fall 1996.

[50] S.-M. Yoo and Z.-H. Zhou. All-to-all
communication in wireless ad hoc networks.
In Proceedings of the 39th Annual ACM
Southeast Conference, pages 180–181, March
2001. http://webster.cs.uga.edu/~jam/

acm-se/review/abstract/syoo.ps.

28

A Chat Application Source
Code

Figure 22 gives the Java source code for the M2MI-
based chat application of Section 4.1 (the one with
omnihandles and a single chat session).

Class ChatDemo is the main program. After initial-
izing the M2MI layer,3 the main program creates a
chat UI object and a chat object. These objects do
all the work.

The chat UI object, class ChatFrame, provides a
simple graphical user interface to display the mes-
sages in the chat log and to let the user enter and
send a new chat message. The chat UI object pro-
vides an operation to register a chat frame listener
object (interface ChatFrameListener). The source
code for class ChatFrame is omitted since it has noth-
ing to do with M2MI.

Interface ChatFrameListener specifies the inter-
face for a chat frame listener object. Whenever the
user sends a new chat message, the chat UI object
calls the send method on its registered chat frame
listeners, passing in the chat message text.

Interface Chat is the target interface for M2MI in-
vocations on the exported chat objects.

Class ChatObject is the exported chat object,
which implements interfaces ChatFrameListener

and Chat. When constructed, the chat object is given
the chat UI object and the user name. The chat ob-
ject registers itself with the chat UI object as a chat
frame listener. The chat object also exports itself to
the M2MI layer as target interface Chat. Finally, the
chat object obtains an omnihandle for interface Chat

from the M2MI layer.
When the user sends a new chat message, the chat

UI object calls the chat object’s — that is, the chat
frame listener’s — send method. (This is a normal
method call, not an M2MI invocation.) The chat
object prepends the user name to the message text
and calls putMessage on the omnihandle for interface
Chat.

The omnihandle invocation causes every chat ob-
ject’s putMessage method to be executed. Each chat
object calls a method in its corresponding chat UI
object to add the chat message to the chat log. (This
is a normal method call, not an M2MI invocation.)

3The argument is a globally unique address for the M2MI
layer that would typically be the host’s network interface’s
MAC address.

public class ChatDemo

{

public static void main

(String[] args)

{

M2MI.initialize (1234L);

ChatFrame theChatFrame = new ChatFrame();

ChatObject theChatObject =

new ChatObject (theChatFrame, args[0]);

}

}

public interface ChatFrameListener

{

public void send

(String line);

}

public interface Chat

{

public void putMessage

(String line);

}

public class ChatObject

implements ChatFrameListener, Chat

{

private ChatFrame myChatFrame;

private String myUserName;

private Chat allChats;

public ChatObject

(ChatFrame theChatFrame,

String theUserName)

{

myChatFrame = theChatFrame;

myUserName = theUserName;

myChatFrame.addListener (this);

M2MI.export (this, Chat.class);

allChats = (Chat) M2MI.getOmnihandle

(Chat.class);

}

public void send

(String line)

{

allChats.putMessage

(myUserName + "> " + line);

}

public void putMessage

(String line)

{

myChatFrame.addLineToLog (line);

}

}

Figure 22: Chat application source code

29

Challenging Encapsulation in the Design
of High-Risk Control Systems

 Daniel Dvorak
JPL / California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

1-818-393-1986

Daniel.Dvorak@jpl.nasa.gov

ABSTRACT
In the hardware/software design of control systems it is almost an
article of faith to decompose a system into loosely coupled
subsystems, with state variables encapsulated in device and
subsystem objects. The engineering advantages of such an
approach are so attractive that it is sometimes applied
inappropriately, yielding a design that hides a tangle of special-case
subsystem-to-subsystem couplings behind a façade of modular
decomposition. The limitations of a device/subsystem architecture
become apparent in the design of high-risk control systems—such
as nuclear power plants and planetary rovers—where the world is
full of physical side-effects that have little “respect” for
conventional subsystem boundaries. Here, the very notion of
decomposition by subsystem, and its attendant state encapsulation,
actually complicates the design. Fundamentally, there is a clash
between a device-subsystem-object metaphor and the laws of
physics. A more appropriate architectural approach is to
acknowledge the underlying physics and to elevate the concepts of
state and models to first-class design elements that are not
encapsulated within subsystem objects.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
domain-specific architectures, information hiding.

General Terms
Design.

Keywords
Encapsulation, isomorphism, state, model, control system, design,
architecture.

1. INTRODUCTION
Software systems vary enormously in the extent to which they
interact with the physical world and deal with its subtleties. At

one extreme are enterprise applications such as management
information systems that deal primarily in a tidy world of data
management, queries, and reporting. Such systems are typically
deployed in an environment of plentiful resources — plenty of
data storage, network throughput, electrical power, and air
conditioning. In such an environment most physical side effects
can be safely ignored. For example, powering up a disk drive in a
server room consumes power, generates heat, and imparts a
rotational torque on the disk drive assembly. These are real
physical effects, but we can safely ignore them as irrelevant side
effects when the resources that they affect are virtually unlimited.
In this situation, power and air conditioning and rotational inertia
are all virtually unlimited.

At the other extreme are resource-limited robots such as
unmanned spacecraft and Mars surface rovers. Since the amount
of mass launched into space is a major cost driver for space
missions, these systems are engineered to carry only enough
resources to accomplish mission objectives, plus a small margin.
Mission activities must be designed to operate within tightly
engineered constraints on electrical power, battery energy, non-
volatile memory, communication link throughput, and many other
resources. For example, turning on a camera to take pictures
draws from a limited power budget, consumes non-volatile
memory to store images, and requires the rover basebody to be
pointed appropriately. This activity uses precious resources that
are then not available to other activities. The net result is that in a
resource-limited system many physical side effects become non-
negligible and therefore must be consciously managed; designs
become more complex because the couplings are more numerous
and often cross conventional subsystem boundaries.

This paper compares two architectures with respect to their
suitability for resource-limited control systems. One architecture
is device/subsystem-oriented, having objects associated with
hardware units, such as drive motors and camera, plus objects
associated with traditional engineering subsystems such as
electrical, thermal, and navigation subsystems. This architecture
encapsulates state variables inside such objects—objects that
logically seem to “own” those state variables. The other
architecture is state/model-oriented, having first-class objects
associated with physical states, such as camera temperature and
batter energy, plus objects associated with models of physical
couplings, such as the effect of a heater on power and the effect of
temperature on a sensor measurement. Despite the appeal of
decomposition by subsystem, the structure of a device/subsystem
architecture depends on an assumption of loose coupling that
simply doesn’t hold in the realm of resource-limited systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
17th Annual ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, November 4-8, 2002, Seattle,
Washington.

Such systems must manage numerous tight couplings of the real
world. Dealing with this in a disciplined way demands an
architecture that acknowledges and adequately represents the
underlying physics of the world.

2. DEVICE/SUBSYSTEM ARCHITECTURE
Most physical systems that people deal with on a daily basis are
designed as a composition of modular subsystems that interact in
a few obvious and easily controlled ways. Such systems are easier
to understand, easier to monitor and control, and easier to
diagnose when faulty. For example, the different subsystems of a
modern home—electrical, heating/cooling, plumbing, telephone,
and cable—are relatively independent of each other, with only a
few important forms of coupling. In truth, there are many physical
couplings among these subsystems, but most are negligible. For
example, the electrical subsystem is a source of electromagnetic
interference to the telephone and cable subsystems, but the signal-
to-noise ratio is high enough that the effects can be ignored.
Similarly, the circulation of hot water in the plumbing system
affects the heating/cooling system, but the effect is negligible
compared to the heating/cooling subsystem’s ability to notice and
compensate. These and other physical effects are negligible
because the system has abundant resources: plenty of electrical
power, abundant heating/cooling capacity, large thermal mass,
substantial electrical and thermal insulation, plenty of
electromagnetic shielding, etc.

In such an environment of plentiful resources, control system
software designers can appropriately treat subsystems as largely
independent, with state variables encapsulated in the subsystem or
device object that has the dominant effect or “ownership” of that
state. For example, hot water temperature could be encapsulated
with the water heater object since the water heater has the
dominant effect on that state. Of course, there are some subsystem
couplings that cannot be ignored because they have intentional
effects or major side effects. For example, an electric hot water
heater depends on power from the electrical subsystem in order to
operate, so this one-way dependency must appear somewhere in
the system logic. This kind of subsystem coupling is so simple to
describe and so few in number that it’s typical for a software
designer to express it on a case-by-case basis, often in the logic of
one or two operations of a class. Figure 1 shows an ideal
decomposition by subsystem, where the only couplings are those
between a child subsystem and its parent subsystem.

2.1 Example: Home Heating System
An illustrative example of the subsystem/device approach to
control systems is the “Smalltalk Home Heating System”
described by Booch [1, chapter 8]. As Booch notes, the home
heating system naturally decomposes into relatively independent
subproblems. The heating system contains top-level objects of a
furnace, heat flow regulator, operator interface, and a home
consisting of multiple rooms. Each room has a current
temperature sensor, a desired temperature sensor, a room
occupancy sensor, and a water valve.

Note that top-level software objects model the obvious physical
elements of a home heating system, and that makes sense as long
as most or all of the couplings exist within containment and/or
attachment relationships. For example, in this system there is
nothing outside of a room that affects the measurements from the
current temperature sensor, so it makes sense to encapsulate the

current temperature state within the room or its temperature
sensor.

In summary, a device/subsystem architecture is appropriate for
many everyday control systems because they exhibit simple
subsystem couplings. Such an architecture is extremely attractive
to most designers because software structure reflects hardware
structure and follows familiar subsystem-oriented decomposition.
The only danger, which this paper explores, is that designer
familiarity with this appealing architecture can lead to its use in
applications where physical couplings are complex and have little
“respect” for the hardware structure and subsystem boundaries.

2.2 Couplings Due to Physics
The limitations of a device/subsystem architecture aren’t apparent
in “everyday systems” in much the same way that the limitations
of Newtonian physics aren’t apparent in everyday experiences,
where velocity is a tiny fraction of the speed of light. In the case
of the device/subsystem architecture the limitations start to appear
in complex systems where the everyday assumptions of loose
coupling simply don’t hold. To illustrate this point, consider a
common, everyday device: a battery-powered electronic
thermostat.

The job of a thermostat is to regulate temperature by sensing the
temperature and by issuing on/off control actions to maintain
temperature within a specified range. The thermostat itself is a
self-contained hardware unit with two simple couplings: it senses
ambient temperature and it opens and closes electrical contact
between two terminals. Since we’re talking about software design,
let’s assume that this electronic thermostat has a microprocessor
running software that performs the temperature regulation. This
looks like a perfect example of a hardware device that is loosely
coupled with respect to an overall heating system, and indeed it is
if that’s an everyday home heating system.

Now consider the same task of temperature regulation, but in a
very different environment: a Mars rover. Two things make this
system very different: electrical power is extremely limited due to
battery and solar panel limitations, and fault protection is a major
concern since there are no repair technicians on Mars (as far as we
know ��� �� ����	
�	��	� ��� ����	� power is that temperature
regulation cannot be treated as an isolated activity; it has to be
coordinated with other power-consuming activities such as
driving, communication, and science instrument usage. Thus, as
much as we would like to think of temperature regulation as the
duty of a self-contained thermostatic unit, it can’t be designed that
way when it relies on the availability of an extremely limited
resource.

In a similar way, designing for fault protection reveals other flaws
with the idea of a loosely coupled thermostat. For example, if the
temperature sensor fails, how do you estimate ambient
temperature? Well, thanks to physics, there are other sources of
evidence about temperature that can and should be used. For
example, the recent history of the heater’s on/off state provides
important evidence about heating. The position of the Sun and its
heating effect can be predicted with a thermal model. Likewise,
power usage of nearby instruments and other devices has a
heating effect that can be predicted, provided that those power
states are accessible. Now, our once-simple thermostat has a lot
more couplings and a lot more to think about. Also, suppose that
the heater fails. How then can you control temperature? Well,

again, physics offers the clues. One way may be to turn on
instruments solely for their heating effect, subject to power
availability. Another way is to reschedule activities that depend on
temperature regulation to occur during mid-day on Mars when
solar heating is at a maximum. Again, our once-simple thermostat
is being asked to exercise control that goes far beyond its original
role in the “thermal subsystem”. The very concept of a self-
contained thermostat is falling apart because its design rests on an
assumption of loose coupling that simply doesn’t hold in this
more complex domain.

3. COUPLING AND URGENCY
In a significant book that analyzed accidents in complex systems
such as Apollo 13 command module and the Three Mile Island
nuclear power plant, Perrow [4] summarized the inherent risks in
different types of systems using a Coupling/Urgency chart1, as
shown in Figure 2. The horizontal axis of coupling ranges from
linear to complex. Linear couplings are those in expected and
familiar production or maintenance sequence, and those that are
quite visible even if unplanned. Complex couplings are those of
unfamiliar sequences, or unplanned and unexpected sequences,
and either not visible or not immediately comprehensible. As
Stevens et al explain, “strong coupling complicates a system since
a module is harder to understand, change, or correct by itself if it
is highly interrelated with other modules.” [5]

The vertical axis of urgency ranges from low to high. Low
urgency systems can incorporate shocks and failures and pressures
for change without destabilization. Low urgency systems tend to
have ambiguous or perhaps flexible performance standards. High
urgency systems have more time-dependent processes: they
cannot wait or stand by until attended to. Reactions, as in
chemical plants, are almost instantaneous and cannot be delayed
or extended.

The placement of systems on this chart is based entirely on
Perrow’s subjective judgments because there is no standard way
to measure the two variables of coupling and urgency.
Nonetheless, the chart offers a useful qualitative comparison of
different kinds of systems, and the history of system-level
accidents supports his finding that complex couplings and high
urgency make systems more prone to mishaps.

This paper focuses on coupling as an architectural driver. While
the time-sensitive aspect of urgency is certainly important in
system design, it is not key to the main point of this paper.

3.1 Coupling in Space Missions
As Figure 1 shows, space missions exist in the upper right
quadrant of complex coupling and high urgency. Systems in this
quadrant are at the highest risk for system-level accidents because
they are harder to design and operate correctly.

Space missions exhibit complex coupling because many resources
are severely limited. Some limitations, such as battery energy and
solar panel power production, are due to the high cost of
launching mass into space. Smaller batteries and smaller solar
panels help reduce that cost. Other limitations such as processing

1 To more closely match computer science terminology, this paper

uses the terms ‘coupling’ and ‘urgency’ in place of Perrow’s
‘interaction’ and ‘coupling’, respectively.

speed and instrument usage ensue from the power limitation;
running the processor at a lower clock rate and using one
instrument at a time reduces power consumption. Still other
limitations arise from the vast distances of outer space, where data
communication rates fall as the square of the distance between
transmitter and receiver. That means that it takes a long time to
transmit data, and that activity typically precludes other activities
while the antenna is carefully pointed at a moving target (such as
Earth). Antenna pointing usually depends on basebody pointing,
which is another managed resource.

Coupling occurs in many ways, including coupling through
shared busses, structure, thermal proximity, grounding,
environment, and so on. Most couplings are a direct consequence
of system-level design, such as an instrument that will be
damaged if it is in the wrong mode when thrusters fire. In
addition, some couplings result from hardware design flaws that
are discovered too late to fix, prior to launch. Examples include
motor commands that cause processors to do a power-on-reset and
communication busses that lock up when the wrong combination
of units is active. To exaggerate just a bit, in a resource-limited
system “everything affects everything”.

3.2 Problems of Device/Subsystem Approach
The main problem in applying a device/subsystem architecture to
resource-limited systems is that the architecture provides no
leverage in dealing with the many non-negligible inter-subsystem
couplings. Each such coupling has to be handled as a special case,
leading to a tangle of subsystem-to-subsystem interactions hidden
behind a façade of modular decomposition. In effect, the original
architecture becomes an appealing fiction.

If a system is to be controlled efficiently then these couplings
must be taken into account, for otherwise some less efficient
scheme would have to be used in a loosely-coordinated manner.
An example of the latter in spacecraft operations has been to
reserve generous resource margins to ensure that a desired activity
succeeds in spite of its side effects on limited resources. For
example, operators may hold a 25% power margin above and
beyond the predicted needs of the planned activities. This
conservative strategy is understandable given the unforgiving
nature of outer space, but it causes a spacecraft or rover to be
significantly underutilized relative to its potential.

Interestingly, the practice of iterative development coupled with a
subsystem decomposition can lead a project into a kind of
architectural trap (though it should be understood that this is a
secondary issue). Iterative development enables a team to
demonstrate early progress and gain confidence by building a
solution to a simplified problem, and then iterating to extend and
refine the design. Unfortunately, the initial simplifying
assumptions may be quite compatible with subsystem
decomposition, leading the project into an architecture that fails to
help when it is needed most—late in the development lifecycle
when high-fidelity behavior must be achieved. As new iterations
require higher fidelity behavior, new couplings that cross device
and subsystem boundaries must be handled. Each one by itself is a
small blemish on an otherwise tidy architecture, but achieving true
high-fidelity behavior for the final delivery can render the original
architecture largely irrelevant.

4. STATE/MODEL ARCHITECTURE
If a device/subsystem architecture is problematic for resource-
limited systems, then what’s a better approach? At a minimum, it
has to be an approach that facilitates a software description of
physical interactions, since management of those interactions is a
dominant force in the design of resource-limited systems. It has to
describe how things affect each other in the physical world, and
this is exactly the role of models in the state/model architecture.
As described below, there are three kinds of effects to model:
measurement effects, command effects, and state effects. These
models exist to support state estimation and state control,
described later.

Just as the notion of model is elevated to a first-class entity, so
also is the notion of state variable. Many state variables have no
obvious encapsulating home within a subsystem-oriented
architecture because many physical influences on their values
have no “respect” for boundaries drawn by subsystem designers.
Such state variables must stand on their own, apart from
subsystems. The notion of state used here is broad, including
many kinds of physical quantities such as temperature, pressure,
switch position, device health, and position of one body relative
to another. Together, state variables and models provide the
means for describing physical interactions in software.

4.1 State Variables
In the realm of control systems, state variables are what system
engineers identify and what operators monitor and control.
Example states include the on/off position of a power switch and
the orientation of a spacecraft. “State knowledge” always has
associated uncertainty because sensors are imperfect, as are our
models of how things work. Explicit representation of uncertainty
enables estimators to be honest about the evidence and controllers
to be cautious during periods of high uncertainty

4.2 Models
4.2.1 Measurement Effects Models
Sensors are hardware devices that produce measurements. Most
real-world sensors are designed to measure a particular physical
quantity, but they inadvertently and/or unavoidably measure other
quantities. For example, a voltage sensor will produce a voltage
measurement, but its value may be sensitive to temperature and
magnetic field strength. Its value is also sensitive to its own
calibration parameters of bias and scale factor. Finally, its value is
affected by the sensor’s health state, which may be in any of
several failure modes.

A measurement model is a mapping from state(s) to measurement.
In the example above, the voltage sensor’s measurement model is
a function of six states: voltage, temperature, magnetic field
strength, sensor bias, sensor scale factor, and sensor health.
Notice that temperature and magnetic field strength are external
influences on the voltage measurements. Hence, this measurement
model expresses two interactions that are independent of a
subsystem hierarchy.

4.2.2 Command Effects Models
Actuators generate physical effects in response to commands. In
addition to their intended effect, many actuators have unintended
and/or unavoidable side effects. For example, a command to turn
on a science instrument on a Mars rover has the desired effect of
activating the instrument, but it also draws power from a limited

supply, it causes localized heating that may affect other things
(such as the voltage sensor mentioned previously), it may generate
a magnetic field that interferes with another instrument, and it
may start transmitting on the data bus, using up part of its limited
capacity. Finally, the effects always depend on the actuator’s
health state, which may be in any of several failure modes.

A command effects model predicts the multiple effects of a
command issued to an actuator in a given state. In this example
the command effects model must predict the effect of a particular
command on the values of five states: instrument activation state,
battery power, nearby temperature, nearby magnetic field, and bus
data rate. Notice that all of these effects, except for instrument
activation, are external to the instrument. Hence, this model
expresses four couplings that would violate an idealized
subsystem hierarchy.

4.2.3 State Effects Models
In the physical world some states affect other states according to
laws of physics and/or consequences of hardware design. For
example, Boyle’s ideal gas law expresses the relation between
pressure state, volume state, and temperature state (PV = nRT).
Similarly, the voltage drop across a resistor in an electrical circuit
is a consequence of Ohm’s law (V=IR). Likewise, the open/closed
state of a valve affects flow state as well as both downstream and
upstream pressure states.

A state effects model expresses such functional relations among
states, and just as with measurement effects models and command
effects models, the effects often span subsystem boundaries.
Further, these are not necessarily just one-way effects; the ideal
gas law describes a constraint that holds among multiple
variables, any of which may be controllable or uncontrollable in a
given system.

4.3 Estimators and Controllers
The three kinds of models described above provide a disciplined
way of representing interactions that must be reasoned about in
resource-limited systems. Accordingly, the architecture should
elevate the concepts of state and models as first-class elements so
that the numerous inter-subsystem couplings can be exposed and
represented, not concealed through back-door device-to-device
and subsystem-to-subsystem connections.

Such an architecture must perform state determination and state
control somewhere, but in general it can’t be done inside device
or subsystem objects because they don’t have sole ‘ownership’ of
the states. As the preceding sections on models illustrated, for any
given state there may be different measurements from different
sensors that provide evidence about its value. Likewise, for any
given state, there may be different commands to different
actuators that can affect its value.

These simple facts suggest that estimators and controllers also
need to be first-class architectural elements, distinct from the
software objects for sensors and actuators and their aggregations.
After all, if there are multiple sources of evidence about a state’s
value, there should be one entity that combines that evidence into
an estimate. Likewise, if there are multiple ways of influencing
the value of a state, there should be one entity that has overall
responsibility for controlling that state.

Estimation and control are seen as distinct elements in this
architecture and should not be combined, as is often the case in a

subsystem approach. The simplest reason is clarity and
correctness; it is easier to design, develop, and test two software
modules where each has a single purpose than one module that
tries to do two distinct things.

The job of an estimator is to interpret many sources of evidence—
from measurements, commands, and state variables—given
models of how things work. Evidence may be noisy, inconsistent,
corrupted, and incomplete. In contrast, the job of a controller is to
issue commands, as appropriate, in an attempt to influence the
value of a state variable to satisfy a goal. Commands may have
delayed effects and actuators may fail.

A second reason for separating estimation from control is more
subtle; when the two tasks are combined, there is a temptation to
shortcut the estimation process and never actually estimate the
state to be controlled, but rather to modify flags and counters that
the control logic “understands”. This practice leads to systems
that are hard for operators to monitor and understand because
many key states are never explicitly estimated, and so the only
way to understand them is to read the code.

4.4 Hardware Adapters
In this architecture the role of the hardware device object has been
diminished relative to the device/subsystem architecture. Its main
role now is to provide access to the hardware sensors and
actuators. Estimators obtain measurements from sensors as inputs
to the state estimation process, and controllers submit commands
to actuators to influence physical state. In many cases, state
variables that seem to be owned by a device should not be
encapsulated in such objects because fault diagnosis reasoning
within estimators and fault response logic within controllers often
need access to such “internal” states.

4.5 Mission Data System
The architecture just described is that of the Mission Data System
(MDS), a state and model-based architecture for resource-limited
control systems, originally designed for unmanned spacecraft and
planetary rovers [2]. The MDS architecture can be understood in
terms of a few basic elements, as depicted in Figure 3.

• State. The MDS architecture is fundamentally state-based.
States are what system engineers identify, what software
engineers design and implement, and what operators monitor
and control. Example states include the on/off position of a
power switch and the orientation of a spacecraft. “State
knowledge” always has associated uncertainty because
sensors are imperfect, as are our models of how things work.
Explicit representation of uncertainty enables estimators to
be honest about the evidence and controllers to be cautious
during periods of high uncertainty.

• Models. Much of what makes software different from
mission to mission is domain knowledge about instruments,
actuators, sensors, wiring, plumbing and many other things.
By expressing such knowledge in inspectable models, apart
from reusable software, the task of customizing MDS for a
mission, then, becomes more a task of defining and
validating models. Importantly, measurement models,
command effects models, and state effects models provide an
architectural basis for representing couplings.

• Goals. Goals are the basis for mission operations. A goal
specifies operational intent as a constraint on the value of a
state variable during a time interval. Importantly, a goal does
not specify actions needed to accomplish it, thus leaving
options open for autonomous control mechanisms. Goals
enable operators to focus on what to accomplish rather than
how to accomplish it. Active goals live in a goal network that
specifies parent/child relationships and timing & ordering
relationships.

• State control. State control encompasses the mechanisms
devoted to goal achievement. This includes elaboration of a
goal into subgoals, scheduling of goals on state timelines,
time-based and event-based initiation of goal execution,
delegation for real-time coordinated control, and hardware
commanding.

• State determination. The task of estimating system state
requires interpretation of many sources of evidence—such as
measurements and commands—given a model of how things
work. Evidence may be noisy, inconsistent, corrupted, and
incomplete. State determination is a complicated enough job
that it is deliberately separated from state control, thereby
facilitating understandability, verification, and reuse.

5. RELATED WORK
In a 1995 joint study between NASA Ames and JPL known as the
New Millennium Autonomy Architecture Prototype (NewMAAP)
a number of existing concepts for improving flight software were
brought together in a prototype form. These concepts included
goal-based commanding, closed-loop control, model-based
diagnosis, onboard resource management, and onboard planning.
When the Deep Space One (DS-1) mission was subsequently
announced as a technology validation mission, the NewMAAP
project rapidly segued into the Remote Agent project [3]. In May
1999 the Remote Agent eXperiment (RAX) flew on DS-1 and
provided the first in-flight demonstration of the concepts. The
MDS project was established in April 1998 to define and develop
an advanced multi-mission data system that unifies the flight,
ground, and test elements in a common architecture. That
architecture is shaped with the themes described in this paper,
some of which were explored and refined by the RAX experience.

6. SUMMARY AND CONTRIBUTIONS
In the design of everyday control systems, the “divide and
conquer” approach decomposes a system into loosely coupled
subsystems that reflect traditional engineering disciplines such as
power, thermal, navigation, telecommunication, science, etc. Each
subsystem “owns” the estimation and control of particular states,
so those state variables are encapsulated within the subsystem or
its sub-subsystems, including proxy objects for devices that are
considered to be part of the subsystem. This approach is
workable—provided that the subsystems are loosely coupled—
and is appealing because it supports a work breakdown according
to engineering disciplines.

In contrast, high-risk control systems differ from everyday control
systems in that the traditional subsystems are not loosely coupled,
for two main reasons. First, in an environment where numerous
activities compete for a share of limited resources, those activities
must be coordinated in a way that is simply unnecessary when the

resources are virtually unlimited. Second, in an environment
where fault-tolerant control is a high priority, control decisions
often must extend beyond the confines of a single subsystem. In
short, the fundamental premise behind subsystem
decomposition—loose coupling—does not hold, so a design
based on such a decomposition would have to violate its own
premise numerous times to deal with couplings that cross
subsystem boundaries.

In designing for a high-risk control system, analysis of the physics
of interactions suggests the shape of a more suitable architecture.
States of the physical world clearly exist, but they do not owe
their existence to a subsystem; they simply “are”, and the job of
the control system is to estimate their values as best as possible
and control them as best as possible, even in the presence of
faults. Estimation and control both depend on knowledge of how
things work and how they fail, and that knowledge must be
expressed somewhere as models of states, commands, and
measurements.

The engineering contributions of this paper lie in five design
principles of the state/model architecture: (1) state variables as a
first-class elements, not subsystems; (2) explicit use of models to
express the physics effects of couplings; (3) clean separation of
state determination logic from state control logic; (4) explicit
management of physical resources (power, memory, etc); and (5)
the use of state constraints for operational control.

Designing for high-risk systems requires a paradigm shift from
subsystem-oriented to state-oriented thinking. “Divide and
conquer” must give way to “state analysis and physics modeling”.
Managing interactions is the key to good design in this domain,
and if architecture is to be a help rather than a hindrance, it must
facilitate representation and reasoning about such interactions.

It is not the intention of this paper to criticize state encapsulation
or information hiding but rather to rethink what kinds of states are
encapsulated in what kinds of classes. In a subsystem-oriented
architecture the classes represent subsystems and devices, and the
encapsulated states are seen as states that are wholly owned and/or
wholly controlled by its subsystem. In a state-oriented architecture
some classes represent and encapsulate individual physical states
and have query, update, and notification operations for
appropriate clients. Other classes represent such clients for state
estimation, real-time control, and deliberative control. The lesson
here, in the context of high-risk control systems, is that some state
variables should not be encapsulated within subsystem objects
because there is no single subsystem having full responsibility for
the variable’s value.

7. EPILOGUE
Engineering disasters can be great learning experiences. The
1930s design of the first Tacoma Narrows Bridge followed a
popular trend toward lightness, structural grace, and flexibility. In
fact, the original design had a 25 foot deep stiffening truss, but
was later changed to an eight foot shallow plate girder, resulting
in a much lighter bridge. Although the bridge was the epitome of
artistry, it collapsed spectacularly in 1940 due to wind-induced
vibrations because aerodynamic phenomena had not been
adequately addressed in the design.

The same dangers of esthetics versus physics exist in software
design, especially since the appearance of a design in UML
diagrams (its esthetics) tends to be more visible to software
engineers than the physics at play. Another esthetic is the appeal
of a popular pattern, such as decomposition by traditional
engineering subsystem; it seems reassuring since it has worked so
well before. The fact that it clashes with the physics of
interactions is sometimes hard to see because software is so
malleable; it’s always easy to add “one more interface” to
accommodate a newly discovered need. The architectural end
result becomes an appealing fiction: a tidy set of subsystems that
hide a tangle of private, back-door interactions.

As software architects we must be careful about applying
comfortable metaphors since they have the power to lead us
astray. Object-oriented analysis is appealing because people can
engage in anthropomorphic storytelling as a design strategy. That
encourages secondary metaphors like ‘ownership’, which then
map into subsystems and encapsulation. The fact that this
approach works well in everyday control systems encourages
architects to apply it to all control system problems. With such a
mindset, it is hard to recognize when a new design problem is
qualitatively different from previous successfully solved
problems. The best antidote for this is an objective analysis of the
phenomena in play and the system-wide couplings that must be
managed; those are the keys to good design. Only after that is
done should one consider architectural styles.

8. ACKNOWLEDGEMENTS
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration. Robert
Rasmussen, chief architect of the Mission Data System, originally
identified the existence of complex interactions—and the need to
manage them architecturally—as a key driver in the MDS
state/model architecture. Erann Gat documented this driver in an
early internal document and later helped to shape the MDS state
architecture. In another internal document, Kirk Reinholtz, chief
programmer of MDS, documented the key limitation of the
subsystem/device architecture in resource-limited systems.

9. REFERENCES

[1] Booch, G. Object Oriented Design with Applications.
Benjamin/Cummings Publishing, 1991.

[2] Dvorak, D., Rasmussen, R., Reeves, G., and Sacks, A.
Software Architecture Themes in JPL’s Mission Data System.
Proceedings of the 2000 IEEE Aerospace Conference, Big Sky,
Montana, March, 2001.

[3] B. Pell, D. Bernard, S. Chien, E. Gat, N Muscettola, P.
Nayak, M. Wagner, B. Williams. An Autonomous Spacecraft
Agent Prototype. Proceedings of the First Annual Workshop on
Intelligent Agents, Marina Del Rey, CA, 1997.

[4] Perrow, C. “Normal Accidents: Living with High-Risk
Technologies.” Basic Books, 1984.

[5] Stevens, W., Meyers, G., and Constantine, L. Structured
Design, in Classics of Software Engineering, Yourdon Press,
1979.

Figure 1. An architecture based on subsystem decomposition rests on an assumption of loose coupling, where interactions among
subsystems are handled via hierarchical pathways of control and status. In such an architecture state variables are encapsulated within the
object that has responsibility for its estimation and control.

Figure 2. Systems that exhibit complex coupling and high urgency are considered high-risk because they are
more prone to system accidents. This chart is due to Perrow [4].

Sub-subsystem A3

System

Subsystem A Subsystem B

Sub-subsystem A2

Sub-subsystem A1

control,

status

control,

status

control,

status

control,

status

Sub-subsystem B3

Sub-subsystem B2

Sub-subsystem B1

Linear Complex

High

Low

COUPLING

URGENCY

Post Office

Most manufacturing

Junior college

Trade schools

Nuclear plant

Military early-warning

Space missions
Chemical plants

Aircraft

Universities

Mining
R&D firms

Military actions

Power grids

Airways

Dams

Rail transport

Marine transport

Figure 3. The state/model architecture of the Mission Data System emphasizes the central role of state knowledge
and models, goal-driven operation, and separation of state determination from control.

 State
 Control

State
Knowledge

Hardware Proxies

Telecommand

Telemetry

Hardware

Coordinat

Goal

Report

Elaborate

Sense

State
Estimation

Models

Measurements Commands

State State

Commands

