

Performance and Evaluation
of Lisp Systems

Richard P. Gabriel

Originally Published by The MIT Press in their Computer Systems Series (ISBN 0-262-07093-6)

Preface

The distance is commonly very great between actual performances and
speculative possibility, It is natural to suppose that as much as has been
done today may be done tomorrow: but on the morrow some difficulty
emerges, or some external impediment obstructs. Indolence, interrup-
tion, business, and pleasure, all take their turns of retardation; and every
long work is lengthened by a thousand causes that can, and ten thousand
that cannot, be recounted. Perhaps no extensive and multifarious per-
formance was ever effected within the term originally fixed in the under-
taker’s mind. He that runs against Time has an antagonist not subject
to casualties. Samuel Johnson (Gibbon’s Miscellaneous Works)

When I ran across this quote, I was at first jubilant to have found something
profound about performance written by Samuel Johnson which I could use as
a centerpiece for the preface to this book. But as I read I saw that he was
talking much too specifically about human performance to be an appropriate
general statement about performance—a statement that could be applied to the
performance of a computer program. It took me a few days to see that the
point Johnson made addressed the very center of what should be learned about
the performance of Lisp systems by anyone who cares to study the material I’ve
presented in this book.

That point is that people work very hard to attain every microsecond of
speed that a computer demonstrates, and there are two major problems facing an
implementor when he embarks on producing a Lisp system: the first problem is the
myriad of decisions to be made, the interactions of various parts of the Lisp system
when they are brought together, the unfortunate choice in one aspect of the system
turing around and influencing, badly, the performance of another; the second
problem is that writing a Lisp system is a monumental undertaking, and this
undertaking is executed within the context of living a life as well. And, although
an implementor might start out with large goals and spectacular intentions, the
time it takes to do the thorough job required to produce an excellent Lisp system
will bring many obstacles and intrusions, impediments and obstructions, and in
the end, Time will have won out, in that every microsecond the implementor grabs
from the hands of Time are bought with hours or days or weeks or months of effort
expended by the implementor.

ii

When I began the adventure on which I am reporting in this book, I had the
belief that I would simply gather benchmark programs, distribute them to a hand-
ful of implementors, and get back the results; my major job would be to distribute
the results to all interested parties. When I first sent out the initial benchmarks,
there was an uproar because the benchmarks weren’t fair, they weren’t representa-
tive of real Lisp programs, people didn’t care about performance now so why bring
up this minor concern as a major one, and what was I trying to do, embarrass
one group of implementors for the benefit of others?

Throughout the adventure, which lasted four years, I was praised for perform-
ing a public service, I was praised for helping find performance and correctness
bugs, I was praised for taking the lead in a necessary area—gathering accurate and
objective performance information—where others would fear to tread or would be
too burdened to tread; and I was accused of favoritism, accused of industrial espi-
onage, even a computer account was closed while I was using it because a system
administrator was told that I was possibly gathering proprietary information.

Some people requested that this book not contain any charts, but that the
benchmark results be included in running text, the idea being that it would take
a significant effort on the part of a reader to make a chart of his own.

But despite the extremes of reaction to my activities, the most common
reaction was for the Lisp implementor to look at the results he got running my
benchmarks compared with the results from other Lisp implementations, and to
turn, quietly and patiently, to his terminal to improve the results. Over the
course of the four-year study I’ve watched the performance of some Lisp systems
improve by factors of up to four on some benchmarks, and by factors of two and
three overall. These results took the full four years to achieve in some cases, and I
think it was the existence of a widely available, common set of benchmarks along
with the results of those benchmarks for a number of Lisp implementations that
have contributed to these improvements.

It is a gift to be born beautiful or rich or intelligent, to be given, by birth,
the possibilities of excellent education, to be endowed with gifts that allow one to
make important and stunning contributions. And I respect those individuals who
use their talents when those talents have been cultivated ‘in the usual manner.’
But I admire, much more, people who are born ugly or poor or of average intel-
ligence, who have minimal opportunities for first-class education, who work their

iii

ways through bad schools and bad breaks to make contributions. Perhaps the
contributions are less important or less frequent than from those who are blessed,
but the contributions are the result of a strong will and advantageous application
of available talent and skills.

And so it is with the performance of Lisp systems: I respect the performance
of Lisp systems based on special hardware designed by wizards, but I admire
the performance of Lisp systems on stock hardware and written by the common
implementor, especially when I’ve watched the performance of those latter systems
creep up over the years, by small increments, and accomplished during periods of
busy activity in other areas.

Acknowledgements

This book is really the confluence of works and results provided to me by
many people: I did not run every benchmark reported here, I did not write every
benchmark, and I did not create every section of this book. However, I gathered
the raw material together and unified it into a book. The sections describing the
various implementations was written based on information provided to me by the
implementors of those systems. In these acknowledgements I hope to credit as
accurately as I can remember those people who did most of the work reported
here.

L. Peter Deutsch got the project started by turning a simple suggestion by
me for a methodology into a statement of volunteering. Early comments, crit-
icisms, benchmarks, and benchmark results were provided by Charles Hedrick,
Mabry Tyson, Paul Martin, Gerrold Ginsparg, Jon L. White, Richard Fateman,
and Larry Masinter. Larry Masinter and I wrote a paper, entitled ‘Performance
of Lisp Systems,’ which was presented at the 1982 ACM Symposium on Lisp
and Functional Programming, and which is largely reproduced, with revision, in
Chapter 1. Bob Boyer, Harry Barrow, and Richard Fateman contributed three of
the more important benchmarks contained herein: BOYER, FFT, and FRPOLY.
Forest Baskett wrote, for another context, PUZZLE. Larry Masinter contributed
TAKL and TAKR. John McCarthy’s bad memory was responsible for TAK.

The material for the sections on the Symbolics Lisp machines and the CADR
was put together by Paul Wieneke, working from Symbolics and MIT documents,
and the material on the instruction fetch unit was provided by Bruce Edwards;
the material for the LMI section was contributed by Morris (Mache) Creeger of
Lisp Machines Inc.; the S-1 Lisp section is an adaptation of a paper presented at
the 1982 ACM Symposium on Lisp and Functional Programming written by Guy
L. Steele Jr., Rod Brooks, and myself; the material for the Franz section was con-
tributed by John Foderaro and Richard Fateman; the material for the NIL section
was contributed by Glenn Burke; the material for Spice section was contributed by
Skef Wholey; the material for the Vax Common Lisp section was contributed by
Walter van Roggen; the material for the PSL section was contributed by Robert
Kessler, Martin Griss, and Jim McDonald; the material for the Xerox section was
contributed by Jon L White and Larry Masinter; and the material for the Data
General section was contributed by Dan Oldman.

v

The following people ran benchmarks and provided a great deal of support
and information about the benchmark results:

Raymond Bates, Alan Bawden, Eric Benson, Bob Boyer, Rod Brooks,
Gary Brown, Howard Cannon, George Carrette, Scott Fahlman, Mike Farmwald,
William Galway, Jim Gay, Erik Gilbert, Joe Ginder, Bernie Greenberg, Richard
Greenblatt, Carl W. Hoffman, Earl Killian, Paul Martin, Dave Moon, Vaughan
Pratt, Tom Rindfleisch, Eric Schoen, Beau Sheil, Guy L. Steele, Jr., Bill vanMelle,
and Dan Weinreb.

Virginia Kean did a major editing job on this book.

— R. P. G.
Palo Alto, California
May 1985

Contents

Chapter 1 Introduction 1

1.1 Levels of Lisp System Architecture 2
1.2 Lisp Operation Level . 18
1.3 Major Lisp Facilities . 20
1.4 The Art of Benchmarking . 23

Chapter 2 The Implementations 31

2.1 MacLisp . 31
2.2 MIT CADR . 34
2.3 Symbolics . 36
2.4 LMI Lambda . 42
2.5 S-1 Lisp . 46
2.6 Franz Lisp . 51
2.7 NIL . 54
2.8 Spice Lisp . 58
2.9 Vax Common Lisp . 63
2.10 Portable Standard Lisp . 66
2.11 Xerox D-Machine . 73

Chapter 3 The Benchmarks 81

3.1 Tak . 81
3.2 Stak . 93
3.3 Ctak . 99
3.4 Takl . 105
3.5 Takr . 110
3.6 Boyer . 116
3.7 Browse . 136
3.8 Destructive . 146
3.9 Traverse . 153
3.10 Derivative . 170
3.11 Data-Driven Derivative . 175
3.12 Another Data-Driven Derivative 181
3.13 Division by 2 . 186
3.14 FFT . 193
3.15 Puzzle . 203
3.16 Triangle . 217

vii

3.17 File Print . 227
3.18 File Read . 232
3.19 Terminal Print . 236
3.20 Polynomial Manipulation 240
3.21 Conclusions . 275

References . 277

Index . 281

Performance and Evaluation of Lisp Systems

Chapter 1

Introduction

This is the final report of the Stanford Lisp Performance Study, which was
conducted by the author during the period from February 1981 through October
1984. This report is divided into three major parts: the first is the theoreti-
cal background, which is an exposition of the factors that go into evaluating the
performance of a Lisp system; the second part is a description of the Lisp imple-
mentations that appear in the benchmark study; and the last part is a description
of the benchmark suite that was used during the bulk of the study and the results
themselves.

This chapter describes the issues involved in evaluating the performance of
Lisp systems and is largely a reprint of the paper “Performance of Lisp Systems”
by Richard P. Gabriel and Larry Masinter. The various levels at which quantita-
tive statements can be made about the performance of a Lisp system are explored,
and examples from existing implementations are given wherever possible. The the-
sis is that benchmarking is most effective when performed in conjunction with an
analysis of the underlying Lisp implementation and computer architecture. Some
simple benchmarks which have been used to measure Lisp systems examined, as
well as some of the complexities of evaluating the resulting timings, are examined.

Performance is not the only—or even the most important—measure of a
Lisp implementation. Trade-offs are often made that balance performance against
flexibility, ease of debugging, and address space.

‘Performance’ evaluation of a Lisp implementation can be expressed as a
sequence of statements about the implementation on a number of distinct, but
related, levels. Implementation details on each level can have an effect on the
evaluation of a given Lisp implementation.

Benchmarking and analysis of implementations will be viewed as comple-
mentary aspects in the comparison of Lisps: benchmarking without analysis is as
useless as analysis without benchmarking.

The technical issues and trade-offs that determine the efficiency and usability
of a Lisp implementation will be explained in detail; though there will appear

2

to be a plethora of facts, only those aspects of a Lisp implementation that are
the most important for evaluation will be discussed. Throughout, the impact of
these issues and trade-offs on benchmarks and benchmarking methodologies will
be explored.

The Lisp implementations that will be used for most examples are:
INTERLISP-10 [Teitelman 1978], INTERLISP-D [Burton 1981], INTERLISP-Vax
[Masinter 1981a] [Bates 1982], Vax NIL [White 1979], S-1 Lisp [Brooks 1982b],
FRANZ Lisp [Foderaro 1982], and PDP-10 MacLisp [Moon 1974],

1.1 Levels of Lisp System Architecture

The performance of a Lisp system can be viewed from the lowest level of the
hardware implementation to the highest level of user program functionality. Un-
derstanding and predicting Lisp system performance depends upon understanding
the mechanisms at each of these levels. The following levels are important for char-
acterizing Lisp systems: basic hardware, Lisp ‘instructions,’ simple Lisp functions,
and major Lisp facilities.

There is a range of methodologies for determining the speed of an implemen-
tation. The most basic methodology is to examine the machine instructions that
are used to implement constructs in the language, to look up in the hardware
manual the timings for these instructions, and then to add up the times needed.
Another methodology is to propose a sequence of relatively small benchmarks
and to time each one under the conditions that are important to the investigator
(under typical load average, with expected working-set sizes, etc). Finally, real
(naturally occurring) code can be used for the benchmarks.

Unfortunately, each of these representative methodologies has problems.
The simple instruction-counting methodology does not adequately take into ac-
count the effects of cache memories, system services (such as disk service), and
other interactions within the machine and operating system. The middle, small-
benchmark methodology is susceptible to ‘edge’ effects: that is, the small size of
the benchmark may cause it to straddle a boundary of some sort and this leads
to unrepresentative results. For instance, a small benchmark may be partly on
one page and partly on another, which may cause many page faults. Finally, the
real-code methodology, while accurately measuring a particular implementation,1

1 Namely, the implementation on which the program was developed.

§ 1.1 Levels of Lisp System Architecture 3

is not necessarily accurate when comparing implementations. For example, pro-
grammers, knowing the performance profile of their machine and implementation,
will typically bias their style of programming on that piece of code. Hence, had an
expert on another system attempted to program the same algorithms, a different
program might have resulted.

1.1.1 Hardware Level

At the lowest level, things like the machine clock speed and memory band-
width affect the speed of a Lisp implementation. One might expect a CPU with a
basic clock rate of 50 nanoseconds to run a Lisp system faster than the same ar-
chitecture with a clock rate of 500 nanoseconds. This, however, is not necessarily
true, since a slow or small memory can cause delays in instruction and operand
fetch.

Several hardware facilities complicate the understanding of basic system per-
formance, especially on microcoded machines: the memory system, the instruction
buffering and decoding, and the size of data paths. The most important of these
facilities will be described in the rest of this section.

Cache memory is an important and difficult-to-quantify determiner of per-
formance. It is designed to improve the speed of programs that demonstrate a lot
of locality2 by supplying a small high-speed memory that is used in conjunction
with a larger, but slower (and less expensive) main memory. An alternative to a
cache is a stack buffer, which keeps some number of the top elements of the stack
in a circular queue of relatively high-speed memory. The Symbolics 3600 has such
a PDL buffer.

Getting a quantitative estimate of the performance improvement yielded by
a cache memory can best be done by measurement and benchmarking. Lisp has
less locality than many other programming languages, so that a small benchmark
may fail to accurately measure the total performance by failing to demonstrate
‘normal’ locality. Hence, one would expect the small-benchmark methodology to
tend to result in optimistic measurements, since small programs have atypically
higher locality than large Lisp programs.

2 Locality is the extent to which the locus of memory references—both instruction fetches

and data references—span a ‘small’ number of memory cells ‘most’ of the time.

4

An instruction pipeline is used to overlap instruction decode, operand decode,
operand fetch, and execution. On some machines the pipeline can become blocked
when a register is written into and then referenced by the next instruction. Sim-
ilarly, if a cache does not have parallel write-through, then such things as stack
instructions can be significantly slower than register instructions.

Memory bandwidth is important—without a relatively high bandwidth for
a given CPU speed, there will not be an effective utilization of that CPU. As
an extreme case, consider a 50-nanosecond machine with 3-µsec memory and
no cache. Though the machine may execute instructions rapidly once fetched,
fetching the instructions and the operands will operate at memory speed at best.
There are two factors involved in memory speeds: the time it takes to fetch
instructions and decode them and the time it takes to access data once a path to
the data is known to the hardware. Instruction pre-fetch units and pipelining can
improve the first of these quite a bit, while the latter can generally only be aided
by a large cache or a separate instruction and data cache.

Internal bus size can have a dramatic effect. For example, if a machine has
16-bit internal data paths but is processing 32-bit data to support the Lisp, more
microinstructions may be required to accomplish the same data movement than on
a machine that has the same clock rate but wider paths. Narrow bus architecture
can be compensated for by a highly parallel microinstruction interpreter because
a significant number of the total machine cycles go into things, such as condition
testing and instruction dispatch, that are not data-path limited.

Many other subtle aspects of the architecture can make a measurable differ-
ence on Lisp performance. For example, if error correction is done on a 64-bit
quantity so that storing a 32-bit quantity takes significantly longer than storing
a 64-bit quantity, arranging things throughout the system to align data appropri-
ately on these 64-bit quantities will take advantage of the higher memory band-
width possible when the quad-word alignment is guaranteed. However, the effect
of this alignment is small compared to the above factors.

§ 1.1 Levels of Lisp System Architecture 5

1.1.2 Lisp ‘Instruction’ Level

Above the hardware level, the Lisp ‘instruction’ level includes such things as
local variable assignment and reference, free/special3 variable assignment, binding,
and unbinding; function call and return; data structure creation, modification, and
reference; and arithmetic operations.

At the ‘instruction level’ Lisp is more complex than a language such as PAS-

CAL because many of the Lisp ‘instructions’ have several implementation strate-
gies in addition to several implementation tactics for each strategy. In contrast,
PASCAL compilers generally implement the constructs of the language the same
way—that is, they share the same implementation strategy. For example, there
are two distinct strategies for implementing free/special variables in Lisp—deep
binding and shallow binding. These strategies implement the same functionality,
but each optimizes certain operations at the expense of others. Deep-binding Lisps
may cache pointers to stack-allocated value cells. This is a tactic for accomplishing
speed in free/special variable lookups.

The timings associated with these operations can be determined either by
analysis of the implementation or by designing simple test programs (benchmarks)
that contain that operation exclusively and that time the execution in one of sev-
eral ways. The operations will be discussed before the benchmarking techniques.

1.1.2.1 Variable/Constant Reference

The first major category of Lisp ‘instruction’ consists of variable reference,
variable assignment, and constant manipulation. References to variables and con-
stants appear in several contexts, including passing a variable as an argument,
referencing a constant, and referencing lexical and global variables.

Typically, bound variables are treated as lexical variables by the compiler.
The compiler is free to assign a lexical variable to any location (or more properly,

3 In the literature there are several terms used to describe the types of variables and how

they are bound in the various implementations. Global variables have a value cell that can

be set and examined at any lexical level but cannot be lambda-bound. A special variable

can sometimes mean a global variable, and sometimes it can mean a free, fluid, or dynamic
variable; these synonymous terms refer to a variable that is not lexically apparent, but that can

be lambda-bound. In this report the terms lexical or local will be used for nonglobal, nonfluid

variables, global for global variables, and free/special for global and fluid variables.

6

to assign any location the name of the lexical variable at various times). Typical
locations for temporaries, both user-defined and compiler-defined, are the regis-
ters, the stack, and memory. Since Lisp code has a high proportion of function
calls to other operations, one expects register protection considerations to mean
that temporaries are generally stored on the stack or in memory. In addition,
since many Lisp programs are recursive, their code must be re-entrant and, hence,
must be read-only. This argues against general memory assignment of tempo-
raries. Consequently, most lexical variables are assigned to the stack in many
Lisp implementations. Variables that are in registers can be accessed faster than
those in memory, although cache memories reduce the differential.4

Compilation of references to constants can be complicated by the fact that,
depending on the garbage collection strategy, the constants can move. Thus,
either the garbage collector must be prepared to relocate constant pointers from
inside code streams or the references must be made indirect through a reference-
table. Sometimes, the constants are ‘immediate’ (i.e., the bits can be computed at
compile time). On some systems, constants are in a read-only area, and pointers to
them are computed at load time. Immediate data are normally faster to reference
than other kinds, since the operand-fetch-and-decode unit performs most of the
work.

1.1.2.2 Free/Special Variable Lookup and Binding

There are two primary methods for storing the values of free/special variables:
shallow binding and deep binding. Deep binding is conceptually similar to ALIST

binding; 〈variable name, value〉 pairs are kept on a stack, and looking up the value
of a variable consists of finding the most recently bound 〈variable name, value〉
pair. Binding a free/special variable is simply placing on the stack a new pair
that will be found before any previous pairs with the same variable name in
a sequential search backwards along the variable lookup path (typically this is
along the control stack).

A shallow-binding system has a cell called the value cell for each variable.
The current value of the variable with the corresponding name is always found

4 And, in fact, on some machines the cache may be faster than the registers, making some

memory references faster than register references. A good example is the KL-10, where, unlike

KA-10, it is slower to execute instructions out of registers and to fetch registers as memory

operands than it is to perform those operations from the cache.

§ 1.1 Levels of Lisp System Architecture 7

there. When a variable is bound, a 〈variable name, old value〉 pair is placed on a
stack so that when control is returned beyond the binding point, the old value is
restored to the value cell. Hence, lookup time is constant in this scheme.

The performance profiles for free/special lookup and binding are very differ-
ent depending on whether you have deep or shallow binding. In shallow-binding
implementations, times for function call and internal binding of free/special vari-
ables are inflated because of the additional work of swapping bindings. On some
deep-binding systems, referencing a dynamically bound variable (which includes
all variable references from the interpreter) can require a search along the access
path to find the value. Other systems cache pointers to the value cells of freely
referenced free/special variables on top of the stack; caching can take place upon
variable reference/assignment or upon entry to a new lexical contour,5 and at each
of these points the search can be one variable at a time or all/some variables in
parallel. Shallow-binding systems look up and store into value cells, the pointers
to which are computed at load time. Deep-binding systems bind and unbind faster
than shallow-binding systems, but shallow-binding systems look up and store val-
ues faster.6 Context-switching can be performed much faster in a deep-binding
implementation than in a shallow-binding one. Deep binding therefore may be
the better strategy for a multi-processing Lisp.7

A complication to these free/special problems occurs if a function can be
returned as a value. In this case the binding context or environment must be
retained as part of a closure and re-established when the closure is invoked. Log-
ically, this involves a tree rather than a stack model of the current execution
environment, since portions of the stack must be retained to preserve the binding
environment.

In a deep-binding system, changing the current execution environment (in-

5 A lexical contour is the real or imaginary boundary that occurs at a LAMBDA, a PROG,

a function definition, or at any other environment construct. This terminology is not universal.

6 Shallow-binding systems look up and store in constant time. Deep-binding systems must

search for the 〈variable name, value〉 pairs, and in cached, deep-binding systems this search time

may be amortized over several references and assignments.

7 A shallow-binding system can take an arbitrary time to context switch, and for the

same reason, a deep-binding system can take an arbitrary amount of time to search for the

〈variable name, value〉 pairs.[Baker 1978b]

8

voking a closure) can be accomplished by altering the search path in the tree. In
cached systems one must also invalidate relevant caches.

In a shallow-binding system, the current value cells must be updated, essen-
tially by a tree traversal that simulates the unbinding and rebinding of variables.

Some shallow-binding Lisps (LISP370, for instance) have a hybrid scheme in
which the value cell is treated more like a cache than like an absolute repository
of the value and does cache updates and write-throughs in the normal manner for
caches.

Some Lisps (the Common Lisp family, for example) are partially lexical in
that free variables are by default free/special, but the visibility of a bound variable
is limited to the lexical context of the binding unless the binding specifies it as
free/special. Lisp compilers assign locations to these variables according to the
best possible coding techniques available in the local context rather than demand
a canonical or default implementation in all cases.8

As hinted, variable access and storage times can vary greatly from implemen-
tation to implementation and also from case to case within an implementation.
Timing just variable references can be difficult because a compiler can make deci-
sions that may not reflect intuition, such as optimizing out unreferenced variables.

1.1.2.3 Function Call/Return

The performance of function call and return is more important in Lisp than
in most other high-level languages due to Lisp’s emphasis on functional style. In
many Lisp implementations, call/return accounts for about 25% of total execution
time. Call/return involves one of two major operations: 1) building a stack frame,
moving addresses of computed arguments into that frame, placing a return address
in it, and transferring control; and 2) moving arguments to registers, placing the
return address on the stack, and transferring control. In addition, function calling
may require the callee to move arguments to various places in order to reflect
temporary name bindings (referred to as stashing below), to default arguments not
supplied, and to allocate temporary storage. Furthermore, saving and restoring
registers over the function call can be done either by the caller or the callee, or

8 Canonical implementations allow separately compiled or interpreted functions to access

free/special variables.

§ 1.1 Levels of Lisp System Architecture 9

by some cache type of operation that saves/restores on demand [Lampson 1982]
[Steele 1979]. As noted in the previous section, function calling can require caching
deep-binding free/special variables on the stack.

Function call and return time are grouped together because every function
call is normally paired with a function return. It is possible for a function to
exit via other means, for example, via the nonlocal exits such as RETFROM in
INTERLISP and THROW in MacLisp. As it searches for the matching CATCH,
THROW does free/special unbinds along the way (referred to as unwinding).

The following two paragraphs constitute an example of the kind of analysis
that is possible from an examination of the implementation.

In PDP-10 (KL-10B or DEC-2060) MacLisp, a function call is either a
PUSHJ/POPJ (3 µsec) for the saving and restoring of the return address and trans-
fer of control, a MOVE from memory to register (with possible indexing off the
stack—.4–.8 µsec) for each argument up to 5, or a PUSH and maybe a MOVEM

(MOVE to Memory—.6 µsec) for each argument when the total number of argu-
ments is more than 5. Function entry is usually a sequence of PUSH’s to the stack
from registers. Return is a MOVE to register plus the POPJ already mentioned.
Upon function entry, numeric code ‘unboxes’ numbers (converts from pointer
format to machine format) via a MOVE Indirect (.5 µsec) to obtain the machine
format number.

Function call without arguments in INTERLISP-10 on a DEC 2060 has a range
of about 3 µsec for an internal call in a block (PUSHJ, POPJ) to around 30 µsec
for the shortest non-block-compiled call (builds a frame in about 60 instructions)
to around 100 µsec (function call to a swapped function).

Some Lisps (Common Lisp [Steele 1982], Lisp Machine Lisp [Weinreb 1981])
have multiple values. The implementation of multiple values can have great im-
pact on the performance of a Lisp. For example, if multiple values are perva-
sive, then there is a constant overhead for marking or recognizing the common,
single-value case, and some tail-recursive cases may require that an arbitrary
amount of storage be allocated to store values that will be passed on—for exam-
ple, (prog1 〈multiple-values〉 . . .). If some multiple values are passed in registers
(S-1 [Correll 1979]), there may be an impact on how the register allocator can
operate, and this may cause memory bottlenecks. If they are all on the stack

10

(Lisp machine, SEUS [Weyhrauch 1981]), a count of the number of values that
must be examined must be made at various times. Sometimes an implementation
may put multiple values in heap-allocated storage. This could severely degrade
performance.

Timing function calls has several pitfalls that should be noted as analyses
such as the ones given above can be misleading. First, the number of arguments
passed may make more than a linear difference. For example, the last of several
arguments could naturally be computed into the correct register or stack location,
causing zero time beyond the computation for evaluating the argument. Second,
if several functions are compiled together or with cross declarations, special cases
can be much faster, eliminating the move to a canonical place by the caller followed
by a stashing operation by the callee. In this case also, complete knowledge of reg-
ister use by each routine can eliminate unnecessary register saving and restoring.
Third, numeric function calls can be made faster given suitable representations of
numbers. In MacLisp, as noted, stashing and unboxing can be incorporated into a
single instruction, MOVE Indirect. Note that these performance improvements are
often at the expense either of type safety or of flexibility (separate compilation;
defaulting unsupplied arguments, for instance).

An expression such as

((lambda (x ...) ...) ...)

is also an example of a function call, even though control is not transferred. If x
is a free/special variable, then in a shallow-binding Lisp there will be a binding
operation upon entry to the lambda and an unbinding upon exit, even in compiled
code; in a deep-binding Lisp, caching of free/special variables freely referenced in
the body of the lambda may take place at entry. In some Lisps the values of
lexical variables may be freely substituted for, so that the code

((lambda (x)
(plus (foo) x)) 3)

may be exactly equivalent to

(plus (foo) 3)

Some machine architectures (e.g., Vax) have special features for making function
call easier, although these features may be difficult to use in a given Lisp imple-
mentation. For example, on the Vax the CALLS instruction assumes a right to left
evaluation order, which is the opposite of Lisp’s evaluation order.

§ 1.1 Levels of Lisp System Architecture 11

Calls from compiled and interpreted functions must be analyzed separately.
Calls from interpreted code involve locating the functional object (in some Lisp
implementations this requires a search of the property list of the atom whose
name is the name of the function.) Calls from compiled functions involve either
the same lookup followed by a transfer of control to the code or a simple, machine-
specific subroutine call; usually a Lisp will attempt to transform the former into
the latter once the function has been looked up. This transformation is called
fast links, link smashing, or UUO-link smashing on various systems. Some Lisps
(Vax NIL and S-1 Lisp) implement calls to interpreted code via a heap-allocated
piece of machine code that simply calls the interpreter on the appropriate function
application. Hence, calls to both compiled and interpreted code from compiled
code look the same. When benchmarking function calls, it is imperative to note
which of these is being tested.

The requirement for this function lookup is a result of the Lisp philosophy that
functions may be defined on the fly by the user, that functions can be compiled
separately, that compiled and interpreted calls can be intermixed, and that when
an error or interrupt occurs, the stack can be decoded within the context of
the error. While link-smashing allows separate compilation and free mixing of
compiled and interpreted code, it does not allow for frame retention and often
does not leave enough information on the stack for debugging tools to decode the
call history.

Franz Lisp is a good example of an implementation with several types of
function-calling mechanisms. It has slow function call, which interprets the pointer
to the function for each call.9 This setting allows one to redefine functions at
any time. Franz also has normal function call, which smashes the address
of the function and a direct machine-level call to that code into instances of
calls to that function. This usually disallows free redefinitions and hence reduces
the debuggability10 of the resulting code. Finally Franz has local function call,
which uses a simple load-register-and-jump-to-subroutine sequence in place of a
full stack-frame-building call. Functions compiled this way cannot be called from
outside the file where they are defined. This is similar to INTERLISP-10 block
compilation. A final type of function call is a variant of APPLY called FUNCALL,

9 Corresponding to the variable NOUUO being T in MacLisp.

10 As contrasted with Debuggabilly, the music of hayseed hackers.

12

which takes a function with some arguments and applies the function to those
arguments. In Franz, if normal function call is time 1.0 on a function-call-heavy
benchmark (TAK′, described below) running on a Vax 11/780, slow function call is
3.95, and local function call is .523. FUNCALL for this same benchmark (involving
an extra argument to each function) is time 2.05.11

In addition, if the formal parameters to a function are free/special, then the
binding described earlier must be performed, and this adds additional overhead
to the function call.

Direct timing, then, requires that the experimenter report the computation
needed for argument evaluation, the method of compilation, the number of argu-
ments, and the number of values. The timing must be done over a range of all of
these parameters, with each being duly noted.

1.1.2.4 Data Structure Manipulation

There are three important data structure manipulations: accessing data,
storing into data, and creating new data. For list cells, these are CAR/CDR,
RPLACA/RPLACD, and CONS.

In addition to CONS cells, several implementations provide other basic data
structures that are useful for building more complex objects. Vectors and vector-
like objects12 help build sequences and record structures; arrays build vectors
(in implementations without vectors), matrices, and multidimensional records;
and strings are a useful specialization of vectors of characters.

Further, many Lisps incorporate abstract data structuring facilities such
as the INTERLISP DATATYPE facility, the MacLisp EXTEND, DEFSTRUCT, and
DEFVST facilities, and the Lisp Machine DEFSTRUCT and FLAVOR facilities. Sev-
eral of these, especially the FLAVOR facility, also support Object Oriented Pro-
gramming, much in the style of SMALLTALK.

The following is an example analysis of CONS cell manipulations.

11 The reason that FUNCALL is faster than the slow-function-call case is that the slow-

function-call case pushes additional information on the stack so that it is possible to examine

the stack upon error.

12 For instance, hunks are short, fixed-length vectors in MacLisp.

§ 1.1 Levels of Lisp System Architecture 13

In INTERLISP-10 on a DEC 2060, times for the simple operations are as follows:
CAR compiles into a HRRZ, which is on the order of .5 µsec. RPLACA is either
.5 µsec (for FRPLACA) or 40–50 µsec (function call + type test). CONS is about
10 µsec (an average of 20 PDP-10 instructions). MacLisp timings are the same
for CAR and RPLACA but faster for CONS, which takes 5 instructions in the
non-garbage collection initiating case.

Creating data structures like arrays consists of creating a header and allo-
cating contiguous (usually) storage cells for the elements; changing an element is
often modifying a cell; and accessing an element is finding a cell. Finding a cell
from indices requires arithmetic for multidimensional arrays.

In MacLisp, for example, array access is on the order of 5 PDP-10 instruc-
tions for each dimension when compiled in-line. For fixed-point and floating-point
arrays in which the numeric data are stored in machine representation, access
may also involve a number-CONS. Similarly, storing into an array of a specific
numeric type may require an unbox.

In some implementations, changing array elements involves range checking on
the indices, coercing offsets into array type. Pointer array entries in MacLisp are
stored two per word, so there is coercion to this indexing scheme, which performs
a rotate, a test for parity, and a conditional jump to a half-word move to memory.
This adds a constant 5 instructions to the 5n, where n is the number of dimensions
that are needed to locate the entry. Hence, storing into an n-dimensional pointer
array is on the order of 5(n + 1) PDP-10 instructions.

Timing CAR/CDR and vector access is most simply done by observing the
implementation. Array access is similar, but getting the timings involves under-
standing how the multidimension arithmetic is done if one is to generalize from a
small number of benchmarks.

A basic feature of Lisp systems is that they do automatic storage manage-
ment, which means that allocating or creating a new object can cause a garbage
collection—a reclamation of unreferenced objects. Hence, object creation has a
potential cost in garbage collection time, which can be amortized over all object
creations. Some implementations do incremental garbage collection with each op-
eration (such as CAR/CDR/RPLACA/RPLACD) on the data type performing a
few steps of the process. Others delay garbage collection until there are no more

14

free objects or until a threshold is reached. Garbage collection will be discussed
in detail in a subsequent section.

It is sometimes possible to economize storage requirements or shrink the
working-set size by changing the implementation strategy for data structures.
The primary compound data structure is the CONS cell, which is simply a pair of
pointers to other objects. Typically these CONS cells are used to represent lists,
and for that case, it has been observed that the CDR part of the CONS cell often
happens to be allocated sequentially after the CONS. As a compaction scheme and
as a strategy for increasing the locality (and hence, reducing the working-set), a
method called CDR-coding was developed that allows a CONS cell to efficiently
state that the CDR is the next cell in memory. However, doing a RPLACD on
such an object can mean putting a forwarding pointer in the old CONS cell and
finding another cell to which the forwarding pointer will point and which will
contain the old CAR and the new CDR. All this could bring the cost of this
relatively simple operation way beyond what is expected. In a reference-count
garbage collection scheme, this operation added to the reference count updating
can add quite a few more operations in some cases. Therefore, on a machine with
CDR-coding it is possible to construct a program that performs many RPLACDs
and that by doing so will show the machine to be much worse than expected
(where that expectation is based on other benchmarks).

The point is that there is a trade-off between compacting data structures and
the time required for performing certain operations on them.

1.1.2.5 Type Computations

Lisp supports a runtime typing system. This means that at runtime it is
possible to determine the type of an object and take various actions depending
on that type. The typing information accounts for a significant amount of the
complexity of an implementation; type decoding can be a frequent operation.

There is a spectrum of methods for encoding the type of a Lisp object and
the following are the two extremes: the typing information can be encoded in the
pointer or it can be encoded in the object. If the type information is encoded
in the pointer, then either the pointer is large enough to hold a machine address
plus some tag bits (tagged architecture) or the address itself encodes the type. As
an example, in the latter case, the memory can be partitioned into segments, and

§ 1.1 Levels of Lisp System Architecture 15

for each segment there is an entry in a master type table (indexed by segment
number) describing the data type of the objects in the segment. In MacLisp this
is called the BIBOP scheme (Big Bag Of Pages) [Steele 1977a].

In most Lisps, types are encoded in the pointer. However, if there are not
enough bits to describe the subtype of an object in the pointer, the main type is
encoded in the pointer, and the subtype is encoded in the object. For instance, in
S-1 Lisp a fixed-point vector has the vector type in the tag portion of the pointer
and the fixed-point subtype tag in the vector header. In SMALLTALK-80 and MDL,
the type is in the object not the pointer.

In tagged architectures (such as the Lisp Machine [Weinreb 1981]), the tags
of arguments are automatically used to dispatch to the right routines by the
microcode in generic arithmetic. In INTERLISP-D operations such as CAR com-
pute the type for error-checking purposes. In MacLisp, interpreted functions check
types more often than compiled code where safety is sacrificed for speed. The
speed of MacLisp numeric compiled code is due to the ability to avoid computing
runtime types as much as possible.

Microcoded machines typically can arrange for the tag field to be easily or
automatically extracted upon memory fetch. Stock hardware can either have byte
instructions suitable for tag extraction or can arrange for other field extraction,
relying on shift and/or mask instructions in the worst case. Runtime management
of types is one of the main attractions of microcoded Lisp machines.

The following paragraph is an example analysis of some common type checks.

In MacLisp, type checking is about 7 instructions totalling about 7 µsec,
while in S-1 Lisp it is 2 shift instructions totalling about .1 µsec. In MacLisp, NIL

is the pointer 0, so the NULL test is the machine-equality-to-0 test. In S-1 Lisp
and Vax NIL, there is a NULL type, which must be computed and compared for.
S-1 Lisp keeps a copy of NIL in a vector pointed to by a dedicated register, so a
NULL test is a compare against this entry (an indirection through the register).

Since type checking is so pervasive in the language, it is difficult to benchmark
the ‘type checking facility’ effectively.

16

1.1.2.6 Arithmetic

Arithmetic is complicated because Lisp passes pointers to machine format
numbers rather than passing machine format numbers directly. Converting to and
from pointer representation is called boxing and unboxing, respectively. Boxing is
also called number-CONSing.

The speed of Lisp on arithmetic depends on the boxing/unboxing strategy and
on the ability of the compiler to minimize the number of box/unbox operations.
To a lesser extent the register allocation performed by the compiler can influence
the speed of arithmetic.

Some Lisps attempt to improve the speed of arithmetic by clever encoding
techniques. In S-1 Lisp, for instance, the tag field is defined so that all positive
and negative single-precision fixed-point numbers consisting of 31 bits of data
are both immediate data and machine format integers with their tags in place.13

Thus, unboxing of these numbers is not needed (though type checking is), but
after an arithmetic operation on fixed-point numbers, a range check is performed
to validate the type. See [Brooks 1982b] for more details on the numeric data
types in S-1 Lisp.

MacLisp is noted for its handling of arithmetic on the PDP-10, mainly because
of PDL-numbers and a fast small-number scheme [Fateman 1973] [Steele 1977b].
These ideas have been carried over into S-1 Lisp [Brooks 1982a].

A PDL-number is a number in machine representation on a stack. This
reduces the conversion to pointer format in some Lisps, since creating the pointer
to the stack-allocated number is simpler than allocating a cell in heap space. The
compiler is able to generate code to stack-allocate (and deallocate) a number and
to create a pointer to it rather than to heap-allocate it; hence, arithmetic in which
all boxing is PDL-number boxing does not pay a steep number-CONS penalty. In
MacLisp there are fixed-point and floating-point stacks; numbers allocated on
these stacks are only safe through function calls and are deallocated when the
function that created them is exited.

The small-number scheme is simply the pre-CONSing of some range of small
integers, so that boxing a number in that range is nothing more than adding

13 The Vax Portable Standard Lisp implementation uses a similar scheme for immediate

fixed-point numbers.

§ 1.1 Levels of Lisp System Architecture 17

the number to the base address of the table. In MacLisp there is actually a
table containing these small numbers, while in INTERLISP-10 the table is in an
inaccessible area, and the indices, not the contents, are used. The MacLisp small-
number scheme gains speed at the expense of space.

The range of numbers that a Lisp supports can determine speed. On some
machines there are several number-format sizes (single, double, and tetraword, for
instance), and the times to operate on each format may vary. When evaluating
the numeric characteristics of a Lisp, it is important to study the architecture
manual to see how arithmetic is done and to know whether the architecture is
fully utilized by the Lisp.

A constant theme in the possible trade-offs in Lisp implementation design
is that the inherent flexibility of runtime type checking is often balanced against
the speed advantages of compile-time decisions regarding types. This is especially
emphasized in the distinction between microcoded implementations in which the
runtime type checking can be performed nearly in parallel by the hardware and
stock-hardware implementations in which code must be emitted to perform the
type checks. Stock-hardware implementations of Lisp often have type-specific
arithmetic operations (+ is the FIXNUM version of PLUS in MacLisp), while ma-
chines with tagged architectures matched to Lisp processing may not support
special type-specific arithmetic operators aside from providing entry points to the
generic arithmetic operations corresponding to their names.

With arithmetic it is to the benefit of stock hardware to unbox all relevant
numbers and perform as many computations in the machine representation as
possible. Performing unboxing and issuing type specific instructions in the un-
derlying machine language is often referred to as open-compiling or open-coding,
while emitting calls to the runtime system routines to perform the type dispatches
on the arguments is referred to as closed-compiling or closed-coding.

A further complicating factor in evaluating the performance of Lisp on arith-
metic is that some Lisps support arbitrary precision fixed-point (BIGNUM) and
arbitrary precision floating-point (BIGFLOAT) numbers.

Benchmarking is an excellent means of evaluating Lisp performance on arith-
metic. Since each audience (or user community) can easily find benchmarks to
suit its own needs, only a few caveats will be mentioned.

18

Different rounding modes in the floating-point hardware can cause the ‘same’
Lisp code running on two different implementations to have different execution
behavior, and a numeric algorithm that converges on one may diverge on the
other.

Comparing stock hardware with microcoded hardware may be difficult, since
a large variability between declared or type-specific arithmetic is possible in non-
generic systems. To get the best performance out of a stock-hardware Lisp, one
must compile with declarations that are as detailed as possible. For example, in
MacLisp the code

(defun test (n)
(do ((i 1 (1+ i)))

((= i n) ())
<form>))

compiles into 9 loop management instructions when no declarations aside from the
implicit fixed-point in the operations 1+ and = are given, and into 5 loop man-
agement instructions when i and n are declared fixed-point. The 40% difference
is due to the increased use of PDL-numbers.

1.2 Lisp Operation Level

Simple Lisp ‘operations,’ i.e., simple, common subroutines such as MAPCAR,
ASSOC, APPEND, and REVERSE, are located above the instruction level. Each is
used by many user-coded programs.

If a benchmark uses one of these operations and if one implementation has
coded it much more efficiently than another, then the timings can be influenced
more by this coding difference than by other implementation differences. Simi-
larly, using some of these functions to generally compare implementations may be
misleading; for instance, microcoded machines may put some of these facilities in
firmware.

For example, consider the function DRECONC, which takes two lists, destruc-
tively reverses the first, and NCONCs it with the second. This can be written

§ 1.2 Lisp Operation Level 19

(without error checking) as

(defun dreconc (current previous)
(prog (next)
b
(cond ((null current) (return previous)))
(setq next (cdr current))
(rplacd current previous)
(setq previous current current next)
(go b)))))))

With this implementation the inner loop compiles into 16 instructions in MacLisp.
Notice that NEXT is the next CURRENT, and CURRENT is the next PREVIOUS. If
we let PREVIOUS be the next NEXT, then we can eliminate the SETQ and unroll
the loop. Once the loop is unrolled, we can reason the same way again to get

(defun dreconc (current previous)
(prog (next)
b
(cond ((null current) (return previous)))
(setq next (cdr current))
(rplacd current previous)
(cond ((null next) (return current)))
(setq previous (cdr next))
(rplacd next current)
(cond ((null previous) (return next)))
(setq current (cdr previous))
(rplacd previous next)
(go b)))

With this definition the (unrolled) loop compiles into 29 instructions in MacLisp,
which is 9.7 instructions per iteration, or roughly 2

3 the number of original in-
structions. It pays an 80% code size cost.

Such things as MAPCAR can be open-coded, and it is important to understand
when the compiler in question codes operations open versus closed. INTERLISP

uses the LISTP type check for the termination condition for MAPping operations.
This is unlike the MacLisp/Common Lisp MAPping operations, which use the
faster NULL test for termination. On the other hand, if CDR does not type-check,
then this NULL test can lead to nontermination of a MAP on a nonlist.

20

1.3 Major Lisp Facilities

There are several major facilities in Lisp systems that are orthogonal to the
subroutine level but are important to the overall runtime efficiency of an imple-
mentation. These include the garbage collector, the interpreter, the file system,
and the compiler.

1.3.1 Interpreter

Interpreter speed depends primarily on the speed of type dispatching, variable
lookup and binding, macro expansion, and call-frame construction. Lexically
bound Lisps spend time keeping the proper contours visible or hidden, so that
a price is paid at either environment creation time or lookup/assignment time.
Some interpreters support elaborate error correction facilities, such as declaration
checking in S-1 Lisp, that can slow down some operations.

Interpreters usually are carefully handcoded, and this handcoding can make
a difference of a factor of two. Having interpreter primitives in microcode may
help, but in stock hardware this handcoding can result in difficult-to-understand
encodings of data. The time to dispatch to internal routines (e.g., to determine
that a particular form is a COND and to dispatch to the COND handler) is of
critical importance in the speed of an interpreter.

Shallow binding versus deep binding matters more in interpreted code than
in compiled code, since a deep-binding system looks up each of the variables when
it is used unless there is a lambda-contour-entry penalty. For example, when a
lambda is encountered in S-1 Lisp, a scan of the lambda-form is performed, and
the free/special variables are cached (S-1 Lisp is deep-binding).

The interpreter is mainly used for debugging; when compiled and interpreted
code are mixed, the ratio of compiled to interpreted code execution speeds is the
important performance measure. Of course, the relative speed of interpreted to
compiled code is not constant over all programs, since a program that performs
90% of its computation in compiled code will not suffer much from the interpreter
dispatching to that code. Similarly, on some deep-binding Lisps, the interpreter
can be made to spend an arbitrary amount of time searching the stack for variable
references, when the compiler can find these at compile-time (e.g., globals).

Also, one’s intuitions on the relative speeds of interpreted operations may
be wrong. For example, consider the case of testing a fixed-point number for 0.

§ 1.3 Major Lisp Facilities 21

There are three basic techniques:

(zerop n)
(equal n 0)
(= n 0)

Where declarations of numeric type are used in compiled code, one expects that
ZEROP and = would be about the same and EQUAL would be slowest; this is true
in MacLisp. However, in the MacLisp interpreter, ZEROP is fastest, then EQUAL,
and finally =. This is odd because = is supposedly the fixed-point-specific function
that implicitly declares its arguments. The discrepancy is about 20% from ZEROP

to =.

The analysis is that ZEROP takes only one argument, and so the time spent
managing arguments is substantially smaller. Once the argument is obtained, a
type dispatch and a machine-equality-to-0 are performed.

EQUAL first tests for EQ, which is machine-equality-of-address, after managing
arguments. In the case of equal small integers in a small-number system, the
EQ test succeeds. Testing for EQUAL of two numbers beyond the small-integer
range (or comparing two unequal small integers in a small-number system) is
then handled by type dispatch on the first argument; next, machine equality of
the values is pointed to by the pointers.

= manages two arguments and then dispatches individually on the arguments,
so that if one supplies a wrong type argument, they can both be described to the
user.

1.3.2 File Management

The time spent interacting with the programming environment itself has be-
come an increasingly important part of the ‘feel’ of a Lisp, and its importance
should not be underestimated. There are three times when file read time comes
into play: when loading program text, when loading compiled code (this code
may be in a different format), and when reading user data structures. The time
for most of these is in the READ, PRINT (PRETTYPRINT), and filing system, in
basic file access (e.g., disk or network management), and in the operating system
interface.

Loading files involves locating atoms on the atom table (often referred to as
the oblist or obarray); in most Lisps, this is a hash table. Something can be learned

22

by studying the size of the table, the distribution of the buckets, etc. One can time
atom hash table operations to effect, but getting a good range of variable names
(to test the distribution of the hashing function) might be hard, and getting the
table loaded up effectively can be difficult.

On personal machines with a relatively small amount of local file storage,
access to files may require operation over a local network. Typically these are
contention networks in the 1–10 megabit per second speed range (examples are
3-megabit Ethernet, 10-megabit Ethernet, Chaosnet). The response time on a
contention network can be slow when it is heavily loaded, and this can degrade
the perceived pep of the implementation. Additionally, the file server can be a
source of slowdown.

1.3.3 Compiler

Lisp compiler technology has grown rapidly in the last 15 years. Early
recursive-descent compilers generated simple and often ridiculous code on backing
out of an execution-order treewalk of the program. Some modern Lisp compilers
resemble the best optimizing compilers for algorithmic languages [Brooks 1982a],
[Masinter 1981b].

Interpreting a language like Lisp involves examining an expression and deter-
mining the proper runtime code to execute. Simple compilers essentially eliminate
the dispatching routine and generate calls to the correct routines, with some book-
keeping for values in between.

Fancier compilers do a lot of open-coding, generating the body of a routine
in-line with the code that calls it. A simple example is CAR, which consists of the
instruction HRRZ on the PDP-10. The runtime routine for this will do the HRRZ

and then POPJ on the PDP-10. The call to CAR (in MacLisp style) will look like
move a,<arg>
pushj p,<car>
move <dest>,a

And CAR would be
hrrz a,(a)
popj p,

if no type checking were done on its arguments. Open-coding of this would be
simply

hrrz <dest>,@<arg>

§ 1.3 Major Lisp Facilities 23

Other types of open-coding involve generating the code for a control structure
in-line. For example, MAPC will map down a list and apply a function to each
element. Rather than simply calling such a function, a compiler might generate
the control structure code directly, often doing this by transforming the input
code into equivalent, in-line Lisp code and then compiling that.

Further optimizations involve delaying the boxing or number-CONSing of
numbers in a numeric computation. Some compilers also rearrange the order
of evaluation, do constant-folding, loop-unwinding, common-subexpression elim-
ination, register optimization, cross optimizations (between functions), peephole
optimization, and many of the other classical compiler techniques.

When evaluating a compiler, it is important to know what the compiler in
question can do. Often looking at some sample code produced by the compiler
for an interesting piece of code is a worthwhile evaluation technique for an expert.
Knowing what is open-coded, what constructs are optimized, and how to declare
facts to the compiler in order to help it produce code are the most important
things for a user to know.

A separate issue is “How fast is the compiler?” In some cases the compiler is
slow even if the code it generates is fast; for instance, it can spend a lot of time
doing optimization.

1.4 The Art of Benchmarking

Benchmarking is a black art at best. Stating the results of a particular
benchmark on two Lisp systems usually causes people to believe that a blanket
statement ranking the systems in question is being made. The proper role of
benchmarking is to measure various dimensions of Lisp system performance and
to order those systems along each of these dimensions. At that point, informed
users will be able to choose a system that meets their requirements or will be able
to tune their programming style to the performance profile.

24

1.4.1 Know What is Being Measured

The first problem associated with benchmarking is knowing what is being
tested.

Consider the following example of the TAK′ function:

(defun tak’ (x y z)
(cond ((not (< y x)) z)

(t (tak’ (tak’ (1- x) y z)
(tak’ (1- y) z x)
(tak’ (1- z) x y))))))

If used as a benchmark, what does this function measure? Careful examination
shows that function call, simple arithmetic (small-integer arithmetic, in fact), and
a simple test are all that this function performs; no storage allocation is done. In
fact, when applied to the arguments 18, 12 and 6, this function performs 63609
function calls, has a maximum recursion depth of 18, and has an average recursion
depth of 15.4.

On a PDP-10 (in MacLisp) this means that this benchmark tests the stack
instructions, data moving, and some arithmetic, as we see from the code the
compiler produces:

tak’: movei a,(fxp)
push p,[0,,fix1] push fxp,tt
push fxp,(a) pushj p,tak’+1
push fxp,(b) move d,-3(fxp)
push fxp,(c) subi d,1
move tt,-1(fxp) movei c,-4(fxp)
camge tt,-2(fxp) movei b,-5(fxp)
jrst g2 push fxp,d
move tt,(fxp) movei a,(fxp)
jrst g1 push fxp,tt
g2: pushj p,tak’+1
move tt,-2(fxp) push fxp,tt
subi tt,1 movei c,(fxp)
push fxp,tt movei b,-1(fxp)
movei a,(fxp) movei a,-3(fxp)
pushj p,tak’+1 pushj p,tak’+1
move d,-2(fxp) sub fxp,[6,,6]
subi d,1 g1:
movei c,-3(fxp) sub fxp,[3,,3]
movei b,-1(fxp) popj p,
push fxp,d

§ 1.4 The Art of Benchmarking 25

One expects the following sorts of results. A fast stack machine might do much
better than its average instruction speed would indicate. In fact, running this
benchmark written in C on both the Vax 11/780 and a Motorola 4 megahertz
MC68000 (using 16-bit arithmetic in the latter case), one finds that the MC68000
time is 71% of the Vax 11/780 time. Assuming that the Lisps on these machines
maintain this ratio, one would expect the MC68000 to be a good Lisp processor.
However, in a tagged implementation the MC68000 fares poorly, since field extrac-
tion is not as readily performed on the MC68000 as on the Vax. An examination
of all instructions and of the results of a number of benchmarks that have been
run leads to the conclusion that the MC68000 performs at about 40% of a Vax
11/780 when running Lisp.

As mentioned earlier, the locality profile of this benchmark is not typical of
‘normal’ Lisp programs, and the effect of the cache memory may dominate the
performance. Let us consider the situation in MacLisp on the Stanford Artifi-
cial Intelligence Laboratory KL-10A (SAIL), which has a 2k-word 200-nanosecond
cache memory and a main memory consisting of a 2-megaword 1.5-µsec memory
and a 256-kiloword .9-µsec memory. On SAIL, the cache memory allows a very
large, but slow, physical memory to behave reasonably well.

This benchmark was run with no load and the result was as follows:

cpu time = 0.595
elapsed time = 0.75
wholine time = 0.75
gc time = 0.0
load average before = 0.020
load average after = 0.026

where CPU time is the EBOX time (no memory reference time included), elapsed
time is real time, wholine time is EBOX + MBOX (memory reference) times, GC
time is garbage collector time, and the load averages are given before and after
the timing run; all times are in seconds, and the load average is the exponentially
weighted average of the number of jobs in all runnable queues. With no load,
wholine and elapsed times are the same.

There are two ways to measure the effect of the extreme locality of TAK′: one
is to run the benchmark with the cache memory shut off; another is to produce
a sequence (called TAK′

i) of identical functions that call functions TAK′
j , TAK′

k,
TAK′

l, and TAK′
m with uniform distribution on j, k, l, and m.

26

With 100 such functions and no load the result on SAIL was

cpu time = 0.602
elapsed time = 1.02
wholine time = 1.02
gc time = 0.0
load average before = 0.27
load average after = 0.28

which shows a 36% degradation. The question is how well do these 100 functions
destroy the effect of the cache. The answer is that they do not destroy the effect
very much. This makes sense because the total number of instructions for 100
copies of the function is about 3800, and the cache holds about 2000 words. Both
benchmarks were run with the cache off at SAIL. Here is the result for the single
function TAK′:

cpu time = 0.6
elapsed time = 6.95
wholine time = 6.9
gc time = 0.0
load average before = 0.036
load average after = 0.084

which shows a factor of 9.2 degradation. The 100 function version ran in the same
time, within a few percent.

Hence, in order to destroy the effect of a cache, one must increase the size
of the code to a size that is significantly beyond that of the cache. Also, the
distribution of the locus of control must be roughly uniform or random.

This example also illustrates the point about memory bandwidth, which was
discussed earlier. The CPU has remained constant in its speed with the cache on
or off (.595 versus .6), but the memory speed of 1.5 µsec has caused a slowdown
of more than a factor of 9 in the overall execution speed of Lisp.14

Some Lisp compilers perform tail recursion removal. A tail-recursive function
is one whose value is sometimes returned by a function application (as opposed to
an open-codable operation). Hence in the function TAK′, the second arm of the
COND states that the value of the function is the value of another call on TAK′,
but with different arguments. If a compiler does not handle this case, then another

14 With the cache off, the 4-way interleaving of memory benefits are abandoned, further

degrading the factor of 7.5 speed advantage the cache has over main memory on SAIL.

§ 1.4 The Art of Benchmarking 27

call frame will be set up, control will transfer to the other function (TAK′, again,
in this case), and control will return only to exit the first function immediately.
Hence, there will be additional stack frame management overhead for no useful
reason, and the compiled function will be correspondingly inefficient. A smarter
compiler will re-use the current stack frame, and when the called function returns,
it will return directly to the function that called the one that is currently invoked.

The INTERLISP-D compiler does tail recursion removal; the MacLisp compiler
handles some simple cases of tail recursion, but it does no such removal in TAK′.

Previously it was mentioned that MacLisp has both small-number-CONSing
and PDL numbers. It is true that

TAK
′(x + n, y + n, z + n) = TAK

′(x, y, z) + n

and therefore it might be expected that if MacLisp used the small-number-CONS

in TAK′ and if one chose n as the largest small-integer in MacLisp, the effects of
small-number-CONSing could be observed. However, the PDP-10 code for TAK′

shown above demonstrates that it is using PDL numbers. Also, by timing various
values for n, one can see that there is no significant variation and that the coding
technique therefore cannot be number-size dependent (up to BIGNUMs).

Thus analysis and benchmarking can be valid alternative methods for infer-
ring the structure of Lisp implementations

1.4.2 Measure the Right Thing

Often a single operation is too fast to time directly, and therefore must be
performed many times; the total time is then used to compute the speed of the
operation. Although simple loops to accomplish this appear straightforward, the
benchmark may be mainly testing the loop construct. Consider the MacLisp
program

(defun test (n)
(declare (special x)(fixnum i n x))
(do ((i n (1- i)))

((= i 0))
(setq x i)))

which assigns a number to the special variable x, n times. What does this program
do? First, it number-CONSes for each assignment. Second, of the 6 instructions

28

the MacLisp compiler generates for the inner loop, 4 manage the loop counter, its
testing, its modification, and the flow of control; 1 is a fast, internal subroutine
call to the number-CONSer; and 1 is used for the assignment (moving to memory).
So 57% of the code is the loop management.

push fxp,(a)
g2: move tt,(fxp)

jumpe tt,g4
jsp t,fxcons
movem a,(special x)
sos fxp
jrst g2

g4: movei a,’()
sub fxp,[1,,1]
popj p,

To measure operations that require looping, measure the loop alone (i.e., measure
the null operation) and subtract that from the results.

As mentioned in the previous section, even here one must be aware of what
is being timed, since the number-CONSing is the time sink in the statement
(setq x i).

In INTERLISP-D and in S-1 Lisp it makes a big difference whether you are
doing a global/free or lexical variable assignment. If x were a local variable, the
compiler would optimize the SETQ away (assignment to a dead variable).

1.4.3 Know How the Facets Combine

Sometimes a program that performs two basic Lisp operations will combine
them nonlinearly. For instance, a compiler might optimize two operations in such a
way that their operational characteristics are interleaved or unified; some garbage
collection strategies can interfere with the effectiveness of the cache.

One way to measure those characteristics relevant to a particular audience is
to benchmark large programs that are of interest to that audience and that are
large enough so that the combinational aspects of the problem domain are reason-
ably unified. For example, part of an algebra simplification or symbolic integration
system might be an appropriate benchmark for a group of users implementing and
using a MACSYMA-like system.

§ 1.4 The Art of Benchmarking 29

The problems with using a large system for benchmarking are that the same
Lisp code may or may not run on the various Lisp systems or the obvious trans-
lation might not be the best implementation of the benchmark for a different
Lisp system. For instance, a Lisp without multidimensional arrays might choose
to implement them as arrays whose elements are other arrays, or it might use
lists of lists if the only operations on the multidimensional array involve scanning
through the elements in a predetermined order. A reasoning program that uses
floating-point numbers 0x1 on one system might use fixed-point arithmetic with
numbers 0x1000 on another.

Another problem is that it is often difficult to control for certain facets in
a large benchmark. The history of the address space that is being used for the
timing—how many CONSes have been done and how full the atom hash table is,
for example—can make a difference.

1.4.4 Personal Versus Time-shared Systems

The most important and difficult question associated with timing a bench-
mark is exactly how to time it. This is a problem, particularly when one is
comparing a personal machine to a time-shared machine. Obviously, the final
court of appeal is the amount of time that a person has to wait for a computation
to finish. On time-shared machines one wants to know what the best possible time
is and how that time varies. CPU time (including memory references) is a good
measure for the former, while the latter is measured in elapsed time. For example,
one could obtain an approximate mapping from CPU time to elapsed time under
various loads and then do all of the timings under CPU time measurement. This
mapping is at best approximate, since elapsed time depends not only on the load
(number of other active users) but also on what all users are and were doing.

Time-sharing systems often do background processing that doesn’t get
charged to any one user. TENEX, for example, writes dirty pages to the disk
as part of a system process rather than as part of the user process. On SAIL

some system interrupts may be charged to a user process. When using runtime
reported by the time-sharing system, one is sometimes not measuring these nec-
essary background tasks.

Personal machines, it would seem, are easier to time because elapsed time and
CPU time (with memory references) are the same. However, sometimes a personal

30

machine will perform background tasks that can be disabled, such as monitoring
the keyboard and the network. On the Xerox 1100 running INTERLISP, turning
off the display can increase Lisp execution speed by more than 30%. When using
elapsed time, one is measuring these stolen cycles as well as those going to execute
Lisp.

A sequence of timings was done on SAIL with a variety of load averages.
Each timing measures EBOX time, EBOX + MBOX (memory reference) time,
elapsed time, garbage collection time, and the load averages before and after the
benchmark. For load averages .2L10, the elapsed time, E, behaved as

E =
{

C(1 + K(L− 1)), L > 1;
C, L1.

That is, the load had a linear effect for the range tested. The effect of load averages
on elapsed time on other machines has not been tested.

The quality of interaction is an important consideration. In many cases the
personal machine provides a much better environment. But in others, the need
for high absolute performance means that a time-shared system is preferable.

1.4.5 Measure the Hardware Under All Conditions

In some architectures, jumps across page boundaries are slower than jumps
within page boundaries, and the performance of a benchmark can thus depend
on the alignment of inner loops within page boundaries. Further, working-set size
can can make a large performance difference, and the physical memory size can
be a more dominating factor than CPU speed on benchmarks with large working-
sets. Measuring CPU time (without memory references) in conjunction with a
knowledge of the approximate mapping from memory size to CPU + memory time
would be an ideal methodology but is difficult to do.

An often informative test is to take some reasonably small benchmarks and to
code them as efficiently as possible in an appropriate language in order to obtain
the best possible performance of the hardware on those benchmarks. This was
done on SAIL with the TAK′ function, which was mentioned earlier. In MacLisp
the time was .68 seconds of CPU + memory time; in assembly language (heavily
optimized) it was .255 seconds, or about a factor of 2.5 better.15

15 This factor is not necessarily expected to hold up uniformly over all benchmarks.

Chapter 2

The Implementations

The following sections contain descriptions of the implementations studied.
Most of the descriptions were submitted by the implementors of the Lisp systems.
In general, the aspects noted in the previous chapter as important to performance
will be described for each implementation.

2.1 MacLisp

MacLisp was one of the first Lisps written on the PDP-10. Its primary au-
thor was JonL White, although many people contributed to it over the years. It
was derived from the PDP-6 Lisp, which was written during the middle 1960’s.
MacLisp on the PDP-10 was introduced in 1972, and in 1984 it was in use on
many DEC-20 installations.

MacLisp enjoys a large runtime system, which includes an interpreter written
in assembly language. The listing of this runtime system is over 600 pages long.
Nearly a decade passed before it was understood that a Lisp could be implemented
in Lisp itself; no such implementations appeared until the mid 1970’s.

2.1.1 Types

The PDP-10 has 36-bit words and a variety of half-word instructions. An
address is 18 bits, and so a CONS cell fits nicely into one 36-bit word. To be able
to look at a pointer (an address) and determine the type of the object to which
the pointer points, the information must be encoded in the address. The method
used is BIBOP. Memory is segmented into pages, each about 1k words long. Each
page contains objects of one type only. To determine the type of a pointer, one
must determine the type of the page to which it points. In general, this can be
done by using a special table (as in MacLisp) or by looking at a header word at
the beginning of the page in question.

Array headers are allocated in this way, and the array elements are placed
elsewhere. Hunks are a short, vector-like data structure in MacLisp and are
allocated using a buddy-block system.

32

2.1.2 Function Call

MacLisp function calling is quite simple; it uses a stack to hold PCs (pro-
gram counters). Arguments are passed in five sequential registers (A, B, C, AR1,
AR2A). If there are more than five arguments, they are passed on the stack, and
the number of arguments passed is placed at the top of the stack.

When compiled code contains a call to a function, a user UUO (Un Used
Opcode) is placed at the point of call. A UUO looks exactly like a machine
instruction in format, but the opcode is not understandable to the CPU. When
the CPU encounters such a UUO, it traps to a handler for it. This is how monitor
calls are done on the PDP-10. UUOs not handled by the operating system can be
handled by user code.

When loading compiled Lisp code, the loader does not fix up function ref-
erences. Instead, it places a UUO with an operand, which is the address of the
symbol that is the name of the function being called. When the UUO is encoun-
tered, the CPU traps to a user routine that finds out the address of the code to
which the function corresponds.

This idea is refined by making a table of such UUO calls, with one entry for
every call to a particular routine. Instead of the UUO appearing in the instruction
stream, an XCT instruction is placed there. The XCT instruction executes the
instruction located at the effective address of its operand as if it were located at
the current PC.

When the UUO determines the correct address, it replaces the UUO call with

PUSHJ P,<function address>

This is the simple function-calling mechanism in MacLisp, and whenever the first
call to a particular function is made, all subsequent calls to that function use this
simple mechanism rather than the UUO mechanism.

The UUO mechanism, however, allows a great deal of debugging function-
ality. The UUO can invoke tracing or other debugging routines at function-call
points. Hence, to extend the utility of this basic facility, the table of UUO calls
is in two parts, one a copy of the other. All calls go through one half of the
table. When the user wishes to invoke some debugging routines, he can cause the
untouched copy of the table to be copied on top of the optimized table. Hence, we

§ 2.1 MacLisp 33

say that the so-called UUOLINKS table can be ‘unsnapped.’ Several other Lisp
implementations—Franz Lisp, for example—use this scheme or one like it.

2.1.3 Fast Arithmetic

One of the most well-known aspects of MacLisp is its fast arithmetic. This
is accomplished in two ways—both are variants of the ‘do not number-CONS’
philosophy.

What makes arithmetic slow in most Lisps is the need to make numbers into
Lisp objects, which means there must be a pointer to them whose type can be de-
duced. In MacLisp, this means moving them into a page full of the required type
of number and returning a pointer to that location. One key to fast arithmetic is
doing this operation only when it is absolutely necessary. Because most fixnums,
in practice, are in the range −1000 to 1000, these numbers are permanently pre-
allocated, and number-CONSing one of them is nothing more than simply adding
the base index of this preallocated table to the original number.

The second way to achieve fast arithmetic is to create two stacks, a FLPDL
and a FXPDL. FLPDL contains only floating-point numbers, and FXPDL only
fixed-point numbers. Arithmetic expressions can use these stacks as temporary
storage, and hence the largest source of unnecessary number-CONSing is elimi-
nated. S-1 Lisp uses this idea.

2.1.4 Remarks

MacLisp was the first high-performance Lisp implementation. For many years
it was the standard against which all Lisp implementations were measured, not
only in terms of performance but also in functionality. The people who were the
primary implementors of NIL, Spice Lisp, ZetaLisp, S-1 Lisp, and Franz Lisp, and
who were the primary architects of the CADR, the Lambda, and the Symbolics
3600 were brought up on MacLisp. Since the primary designers of Common Lisp
were drawn from this group the intellectual debt to MacLisp is considerable.

In the tables, the name SAIL is used to refer to the Stanford Artificial Intel-
ligence Laboratory’s KL-10B, which runs the WAITS time-sharing system. The
machine has 3.3 megawords of physical memory and does not page. The MacLisp
dialect is identical to the MIT BIBOP version. The KL-10B CPU is identical to
the DEC-2060 CPU.

34

2.2 MIT CADR

Symbolics Inc. and LISP Machine Inc. (LMI), both Lisp machine companies
based in Cambridge, Massachusetts, were spin-offs of the MIT Artificial Intel-
ligence Laboratory Lisp machine project. LMI was the first company to sell a
commercial version of the MIT CADR, and Symbolics soon followed with a simi-
lar machine. Since then, these two companies have gone in different directions.

The following description is reasonably accurate for all three of the MIT
CADR, the LMI CADR, and the Symbolics LM-2.

2.2.1 CADR and LM-2

The CADR is the MIT Lisp machine; it is quite similar to the Symbolics LM-
2. Both machines run a dialect of Lisp called ZetaLisp, which is a direct outgrowth
of the MIT Lisp Machine Lisp (in fact, the two dialects share a manual).

The CADR is 32-bit microprocessor with up to 16k of 48-bit words of writable
control store and a 180-nanosecond microcycle time. The memory configuration
ranges from 255k words, minimum, to 4 megawords. It was designed to emulate
complex order codes, especially ones involving stacks and pointer manipulation.
While not tied exclusively to Lisp, the CADR is well suited to it and contains
hardware to support a virtual Lisp Machine. For example, there is hardware
to aid in the processing of the 16-bit instruction stream generated by the Lisp
compiler. In addition, the CADR has flexible type-dispatching, function calling,
and byte manipulation capabilities; it also supports internal stack storage.

The CADR derives much of its power from extensive microcoding. This is
assisted by a 14-bit microprogram counter that, acting as a traditional processor,
permits up to 16k words of dynamically writable microprogram memory. There
is also a 32-location microcode function return stack.

The CADR has linear, paged virtual memory comprising 65,536 pages of 256
32-bit words. A two-level memory map translates each virtual address of 24 bits
into a 22-bit physical address.

There is a 1 kilobyte pointer-addressable RAM, which behaves like a cache for
the top of the stack. Although the 3600 has more hardware for stack manipulation,
the CADR has more microcode support, including a capability for microcompiled
functions that use the hardware CALL instruction.

§ 2.2 MIT CADR 35

2.2.1.1 Function Call

The CADR uses an inverted calling sequence for function calls. The CALL
instruction opens a stack frame (the maximum size is 128 words Then when the
caller pushes arguments on the stack, they are placed where the callee expects
them. This avoids the overhead of copying the arguments. The last argument
value is moved to the destination D-LAST, which executes the function call.

2.2.1.2 Types

The combination of tagged data objects and a 32-bit word makes for non-
standard number formats on the CADR. Fixnums are a 24-bit immediate datum.
Word addresses are also 24-bits. Flonums (floating point numbers) are imple-
mented as pairs of words; while larger than the single format on most systems,
they are slower to access. The significand is 32 bits and the exponent is 11 bits.

36

2.3 Symbolics

2.3.1 3600

The 3600 is the current product offering of Symbolics. It is an intellectual
descendent of the CADR and the LM-2 but has more hardware support for Lisp.

The Symbolics 3600 is built around a microcoded 36-bit processor (28/32
bits data, 4/8 bits tag) with a 180 to 250-nanosecond cycle time. The minimum
memory configuration is 256k words and the maximum is 7.5 megawords. The
architecture of the 3600 is based primarily on the requirements of Lisp. While
it currently has less microcode support than the CADR, it benefits from a more
appropriate hardware design and a more efficient instruction set.

The 3600 has a demand-paged virtual memory that is word addressable. Ran-
dom access of a word takes 3 machine cycles (600 ns), while sequential access takes
one cycle. The virtual memory address space is 256 megawords, approximately
5 megawords of which is occupied by system software. The 28-bit virtual address
is passed through a hierarchy of map tables to obtain the appropriate address.

From a programming standpoint, one can think of main memory as a large
cache. Virtual memory is not allocated by process, but rather is split up by AREA
feature in ZetaLisp and then further carved up into Lisp objects. The user can
create AREAs to contain related data and thus increase locality effects.

The default paging algorithm is based on a least-recently-used (LRU) re-
placement technique, but the user can optionally affect the storage scheme and
paging algorithm by setting characteristics of a particular AREA. Common mod-
ifications include changing the number of pages swapped at a time, locking pages
into memory, and specifying sequential rather than random access.

One of the unique features of the 3600 is hardware-supported type checking.
Runtime typing happens during instruction execution rather than prior to it as in
the CADR design. This is accomplished by examining the tag field appended to
each Lisp object. Thus, macroinstructions such as ‘+’ are generic and compiler
declarations for number types are no-ops. For example, the ADD instruction
checks the type of each operand while the addition is in progress, then the ADD
completes if the arguments are fixnums; otherwise it traps to microcode for floats
or to Lisp code for BIGNUMs.

§ 2.3 Symbolics 37

2.3.1.1 Types

There are two basic formats for the 36-bit data word in the 3600. One format
consists of an immediate number made up of a 2-bit tag, 2-bits for CDR-coding,
and 32 bits of data. The other is a tagged pointer consisting of a 2-bit CDR
code, a 6-bit data type tag, and 28 bits of address for the pointer itself. In main
memory, these formats are augmented by 7 bits for error correction code (ECC)
plus one spare bit for a total of 44 bits, which is the width of the 3600’s data
path.

Both the CADR and the 3600 make extensive use of a list compaction tech-
nique termed ‘CDR-coding.’ In both machines, data word formats dedicate 2 bits
for the three values used for this method. One value, ‘Cdr-normal,’ indicates that
the list element is the CAR of a CONS pair (i.e., the next word is a pointer to the
CDR). This is the traditional pair representation for CAR and CDR. The other
two values allow storage of lists as vectors in memory, and this cuts the storage
required for lists in half. ‘CDR-next’ indicates that the next list element is the
next word in memory. ‘CDR-NIL’ marks the last object in the list/vector.

Whether a list manipulating function produces a CDR-coded list or not de-
pends on the nature of the function. For example, LIST produces a CDR-coded
list, but CONS can’t. As one might imagine, hybrid lists are common. The
construct (CONS 1 (LIST 2 3 4)) would produce a list whose second, third, and
fourth elements are logically a vector.

It may be useful here to give the sequence of operations that the 3600 com-
pletes to get the CDR of a list. First, CDR checks to see if it has a valid argument:
NIL, a list, or a locative (a low-level pointer to a Lisp object cell on the CADR
and the 3600). Then it branches on the argument type. If the argument is NIL,
then it returns NIL. If the argument is a locative, it returns the contents of the
cell to which it points. To take the CDR of a list, the microcode dispatches on
the value in the CDR code field. If that value is CDR-next, it increments the cur-
rent pointer and returns the new pointer. If the CDR code field is CDR-NIL, it
returns NIL. Otherwise, in the CDR-normal case, it increments the word pointer
and returns the contents of the cell being pointed to.

CDR of NIL takes 2 cycles, CDR of a locative takes 4 cycles, CDR of a CDR-
next list takes 5 cycles, CDR of a a CDR-NIL list takes 6 cycles, and CDR of a
CDR-normal list takes 6 cycles.

38

Most of the 3600’s architecture is built around stacks, although it is not purely
a stack machine. Most, though not all, of the 3600’s instructions use the stack
to get operands and stash results. There are no general purpose registers at the
macroinstruction level. Stacks facilitate passing arguments to functions and flavor
methods, returning single and multiple values, and making local data references.
Given the importance of flexible function calling in modern Lisp dialects, this is
a crucial design feature.

Associated with each process is a separate environment called a ‘stack group.’
Stack groups in ZetaLisp may be created and manipulated by the user. Stack
groups have three components: the control stack, the binding stack, and the data
stack.

The 3600’s processor hardware handles most stack management tasks. There
are two 1k word stack buffers, which behave like cache memory. These contain the
top of the Lisp control stack, which is maintained by the virtual paging system. As
mentioned above, most memory references in Lisp are passed through the stack.
This speeds up access times considerably in CPU-bound programs. Several stack
frames at the top of the stack are held in the stack buffer, which has faster access
and more bandwidth than main memory.

Pointers to the stack buffers are also managed by the hardware. By eliminat-
ing the need for microcode to handle stack manipulations, stack instructions like
PUSH and POP work in one machine cycle. There is also a special top-of-stack
register.

One component of a stack group is the control stack, which consists of a series
of concatenated frames that correspond to function calls ordered last in, first out.
A frame is made up of a fixed header, slots for arguments and local variables,
and a temporary stack area that holds the computed arguments and the result(s)
returned from the called function.

As mentioned above, stack groups have two other components, namely, the
binding stack and the data stack.

The binding stack is used to manage the binding of special variables. Each
binding is represented by a pair of words. One is a locative to the value cell of the
variable; the other contains the previous value. The CDR-codes of these words
supply information about the binding, including whether or not it is a closure

§ 2.3 Symbolics 39

binding. The stack group that is associated with each binding stack keeps track
of pointers to the base of the stack, the highest legal word, and the stack overflow
limit.

Binding occurs by reading the value cell pointed to by the first word of the
pair (following any invisible pointers), storing it in the second word, putting the
new value in the original value cell, and finally incrementing the stack pointer.

To unbind, the word pair is read out of the binding stack, the old value
is restored, and the binding stack pointer is decremented. Constructs such as
THROW unbind as they unwind each appropriate stack.

The data stack is not implemented at the time of this writing. The data
stack will contain objects of dynamic extent such as temporary arrays and lists to
reduce garbage collection overhead.

2.3.1.2 Function Call

During a function call, the arguments are computed and then pushed onto
the temporary stack. The function call instruction specifies the function to be
called, the number of arguments, and what to do with the results (ignore them,
push them on the temporary stack, return them as the caller’s result, or accept
multiple values on the stack). The caller sees if there is room in the stack buffer
for a new frame, checks for the right number of arguments and the legality of
the function being called. If all is well, the caller builds a frame and copies the
new arguments to it. The frame itself may be up to 220 words long. &REST
arguments are handled by passing the callee a pointer to a CDR-coded list of
the arguments from earlier in the stack (created either by the current caller or
by some previous caller). This avoids the necessity of variable length data in the
main part of the frame. The caller then transfers control to the called function,
which ultimately issues a return instruction. The return instruction insures that
the caller’s frame is in the stack buffer, removes the called function’s frame, and
replaces the caller’s copy of the arguments with multiple returned values if any;
otherwise it places the single returned value in the appropriate place.

The compiler for the 3600 does not produce as highly optimized code as it
might. In part, this is because the 3600’s hardware was designed to alleviate
some of the problems that are usually addressed by an optimizing compiler. With
the use of stack buffers, sophisticated register allocation is unnecessary.

40

Like the CADR, the compiler for the 3600 allows the user to specify source
level optimizers. These are stored on the property list of the respective functions.
Optimizers are used to specify functionally equivalent, but more efficient forms;
for example, (= object 0) may become (ZEROP object).

The user can also control in-line coding by using the DEFSUBST special form
and, of course, macros.

2.3.1.3 Data Formats

The 3600’s data formats are significantly different from those of the CADR.
On the 3600, pointers are 28 bits and fixnums are 32 bits. Floating-point numbers
comprise 8 bits of exponent and 23 bits of significand. This corresponds to IEEE
single precision specifications. Also, on the 3600 floating-point numbers are an
immediate datum, while on the CADR they are larger but implemented as word
pairs. This change is reflected in the improved times for the FFT benchmark and
the floating-point tests in FRPOLY. This format also speeds up garbage collection
of floating-point objects.

2.3.1.4 Instruction Pre-Fetch

The 3600 supports an optional instruction pre-fetch unit (the IFU), which
fills the instruction cache asynchronously. This pre-fetcher is sufficiently fast (two
instructions every machine cycle), so that it usually gets the instruction there
before the processor needs it, even in straight-line code. Thus there are no wait
states for straight-line code.

If there are branches, the pre-fetcher will not follow them. Thus, if the
instruction streams remerge, there is a good chance that the pre-fetcher will have
already fetched the next instruction. Backward branches are almost always in the
cache. If the processor branches and the pre-fetcher has not fetched the instruction
in time, one of two situations has occurred.

In the first situation the pre-fetcher does not know the virtual address trans-
lation for the page that was branched to (in other words, the branch was across
a page boundary). Consequently, the pre-fetcher and instruction pipeline shut
down until the execution state has emptied the pipe. Then, the execution state is
redirected to do the page translation for the new page. There are 4 dead cycles
until the first instruction comes back and is executed.

§ 2.3 Symbolics 41

In the second situation the instruction branched to was on the same page
and had not yet been loaded by the pre-fetcher. In this case, the pre-fetcher
is shut down and restarted at the new address. It takes 5 cycles to get the
instruction ready for the execution stage. However, this can be overlapped with
the execution of the two instructions already in the instruction pipeline (in the
case of an unconditional branch).

In a conditional branch, the CPU and pre-fetcher cannot proceed until the
result of the branch is known, so there is at most a single instruction in the pipeline
(the IFU fetches both the target and the fall-through of a conditional branch). If
the instructions in the pipeline take more than 4 cycles, then there are no wait
states; otherwise wait states are inserted. Another complication is that the pre-
fetcher stays out of the way of the main processor memory requests, so that if the
processor is requesting memory, then the pre-fetcher can fall behind. This almost
never happens in actual code.

2.3.2 Details on the Results

The timing results presented are for the Common Lisp versions. Page time
includes both time spent satisfying page faults and time spent creating new pages.
Page time is highly dependent on the configuration of the system and the tuning
of the garbage collector for the particular application. The numbers given here are
the minimum expected time on the 3600—the configuration that was timed had
6 megabytes of physical memory, and the garbage collector was carefully tuned.

CPU time is real time less page time. The scheduler was disabled while the
benchmarks were run to eliminate the effects of other processes. These CPU time
figures are repeatable across different system configurations. These results were
obtained on a Symbolics 3600 system running System 271.19 and microcode 319.

42

2.4 LMI Lambda

LISP Machine, Inc. (LMI) supports two versions of the Lisp Machine archi-
tecture originally developed at MIT. LMI’s first machine, the CADR, was the first
commercial incarnation of the MIT CADR. LMI’s current product, the Lambda,
is a lower-cost and higher-performance descendant of the CADR. The CADR and
the Lambda both execute the Common Lisp dialect in addition to their traditional
ZetaLisp software.

The CADR was discussed earlier.

2.4.1 The Lambda Architecture

The Lambda is a 32-bit microprogrammed processor with up to 64K 64-bit
words of virtual control store and a 200 nanosecond microcycle time. Although the
Lambda design is flexible enough to be adapted to other purposes, it is primarily
a tagged architecture tailored for executing Lisp. It features 32 megawords of
demand-paged virtual address space, a large number of internal registers, a byte-
manipulation capability, a 4096-word instruction and data cache, a 2048-word
stack cache, logic for tag comparison and boxing/unboxing tagged quantities, and
pipelined logic for fetching and decoding the 16-bit order codes produced by the
Lisp Machine compiler.

A unique feature of the Lambda is its pageable control store and microcom-
piler, which compiles Lisp into microcode. Under favorable conditions, the mi-
crocompiler can produce microcode for the Lambda processor, yielding improved
performance in many cases. For example, the TAK benchmark microcompiled on
a Lambda executes in 0.192 seconds, which is faster than all other reported results
except for those of the Cray-1 and the IBM 3081.

The Lambda processor resides on the NuBus, a fast 32-bit synchronous bus
developed at the MIT Laboratory for Computer Science and produced by Texas In-
struments. The NuBus features a 10 Mhz clock, a low-latency arbitration scheme,
and a bandwidth of 37.5 megabytes/second in one of several block-transfer modes.
In addition, the NuBus supports multiple-processor operation with fair arbitra-
tion, which allows LMI to supply on a single bus low-cost configurations of multiple
Lambda processors that share physical resources such as disks and network in-
terfaces. With LMI’s NuBus coupler, several NuBus card cages can be directly
addressed.

§ 2.4 LMI Lambda 43

2.4.2 Performance Issues

The Lambda derives much of its performance from its stack cache, a bank
of fast memory acting as a specialized top-of-stack cache. The contents of this
cache are managed by the microcode to contain the contents of the top of the
control stack for the current stack group. The frame of the currently executing
function is always resident in the stack cache, and references to elements of the
frame (arguments, local variables, temporary values, or frame header words) are
made by indexing off a frame pointer held in a special register. The stack level is
checked on function entry and exit and adjusted as necessary by moving words to
or from the stack image in main memory.

2.4.3 Function Calling

The Lambda uses an inverted function-calling sequence that eliminates the
need to copy pieces of stack around during normal execution. A function call starts
with a ‘CALL’ instruction, which builds a frame header, and then the arguments
are pushed. The last argument is pushed to a special destination, which causes
the function to be invoked. This can immediately push any local variables and
temporaries and begin execution. The result of the function is pushed to another
destination, which causes the frame to be popped and the value to be transmitted.

Many Common Lisp functions are implemented in microcode on the LMI
Lambda. Conventional machines implement logically primitive operations such
as ASSQ, ASSOC, MEMQ, MEMBER, property list manipulation, or BIGNUM
arithmetic in macrocode or Lisp. In the Lambda, these functions are implemented
in microcode.

The data/instruction cache in the Lambda speeds up typical Lisp execution
by about 30%. Most of the benefit comes from faster macroinstruction fetching
(the stack cache eliminates most data references to memory). The cache is a
physical-address write-through design and achieves an LMI-estimated 85% hit
rate. Using a two-level mapping scheme, virtual address translation proceeds
in parallel with cache hit detection. There are a number of improvements to
be made in the operation of the cache, including the use of block-mode NuBus
memory cycles for cache updating in regions with high locality of reference; the
benchmark figures do not reflect these enhancements.

The Lisp Machine uses CDR-coding to represent list structure efficiently. Two

44

bits in the tag field of every object indicate where the CDR of that object (if any
exists) is to be found. If the CDR-code has the value CDR-normal, then the CDR
of the object is found by following the pointer in the next higher location. If
the CDR-code has the value CDR-next, then the CDR object is the next higher
location. If the CDR-code is CDR-NIL, then the CDR of the object is NIL. CDR-
coding is completely transparent to the user and reduces the space needed to store
list structure by nearly 50%. This scheme is essentially the same as that used on
the 3600.

2.4.4 The Microcompiler

The optimizing microcompiler eliminates all the overhead of macroinstruc-
tion processing and speeds up control flow and most forms of data manipulation.
Compile-time declarations (using Common Lisp syntax) allow further optimiza-
tion of function calling and open-coding of fixnum arithmetic.

As has been often noted, function-calling speed is quite central to the per-
formance of most Lisp programs. When generating a call from one microcoded
function to another, the microcompiler can generate a particularly fast form of
function call termed a ‘micro-micro’ call. In the micro-micro function call, the
call and return are only one microinstruction each and are pipelined using the
delayed-branch mechanism of the Lambda micromachine. The overhead of calling
and returning from a function is only 200 nanoseconds. Argument transmission
is also efficient under microcompilation.

To produce optimal code the microcompiler requires special declarations
in much the same manner as do Lisps running on conventional architectures.
Microcode-to-microcode (micro-micro) calls can only be produced using appro-
priate declarations. First, the microcompiler needs assurance that the target
function will indeed be microcoded and will reside in the control store when it is
called. Second, the micro-micro call pushes return addresses on a special stack,
256-words deep, in the Lambda micromachine. Deeply recursing functions must
arrange to check this stack for overflow occasionally—this process is controlled by
declarations. It is interesting to note, however, that all of these benchmarks were
run without overflow checks and without microstack overflow.

There are several language constructs that cannot appear in microcompiled
functions. Currently these include &REST arguments, CATCH/THROW control

§ 2.4 LMI Lambda 45

structures, and the return or receipt of multiple values. The other limitation is
that only 64k microinstructions can be loaded at one time, though more may
be resident in main memory and explicitly loaded before use. However, 64k is a
significant amount of microcode: the Lambda system microcode comprises about
14k instructions, and a program the size of the BOYER benchmark typically
requires less than 500 instructions.

2.4.5 The Benchmarks

The benchmark figures reported are for a Lambda running a preliminary
version of LMI’s release 2.0 software (System version 99.67). The Lambda had
760k words of physical memory, and no other processors were running on the
NuBus at the time. Scheduling overhead, typically about 3%, is included in the
figures.

46

2.5 S-1 Lisp

S-1 Lisp runs on the S-1 Mark IIA computer, which is a supercomputer-class
complex instruction set computer. S-1 Lisp is almost entirely written in Lisp.

2.5.1 Architecture

The S-1 architecture [Correll 1979] has some unusual features (as well as some
ordinary ones):

— Words are 36 bits, quarter-word addressable (bytes are 9
bits, not 8).

— Virtual addresses are 31 bits plus a five-bit tag. Nine of the
32 possible tags have special meaning to the architecture
(to implement MULTICS-like ring protection, among other
things); the others may be used freely as user data-type
tags.

— Most arithmetic instructions for binary operations are ‘2-
1/2 address.’ The three operands to ADD may be in three
distinct places provided that one of them is one of the
two special registers named RTA and RTB. If the destina-
tion and one source are identical, then both addresses may
be general memory locations (as in the PDP-11). As an
example, these patterns are permissible for the ‘subtract’
instruction (M1 and M2 are arbitrary memory or register
addresses):

SUB M1,M2 ;M1 := M1 - M2
SUB RTA,M1,M2 ;RTA := M1 - M2
SUB RTB,M1,M2 ;RTB := M1 - M2
SUB M1,RTA,M2 ;M1 := RTA - M2
SUBV M1,M2 ;M1 := M2 - M1
SUBV M1,RTA,M2 ;M1 := M2 - RTA

— A variant of IEEE proposed standard floating-point is pro-
vided, including special ‘overflow,’ ‘underflow,’ and ‘unde-
fined’ values.

§ 2.5 S-1 Lisp 47

— There are sixteen rounding modes for floating-point op-
erations and for integer division. (Thus FLOOR, CEIL,
TRUNC, ROUND, MOD, and REMAINDER are all prim-
itive instructions).

— There are single instructions for complex arithmetic: SIN,
COS, EXP, LOG, SQRT, ATAN, and so on.

— There are vector-processing instructions that perform
component-wise arithmetic, vector dot product, matrix
transposition, convolution, Fast Fourier Transform, and
string processing.

2.5.2 Hardware

The Mark IIA has an 11-stage pipeline, a 16k-word data cache and an 8k-word
instruction cache. The Mark IIA has 32 megawords of physical memory.

2.5.3 Data Types

In S-1 Lisp the type of a data object is encoded primarily in the pointer to
that data object and secondarily in the storage associated with the object, if any.
It is important that all pointers to a data object have a type field consistent with
that object.

The format of a pointer in S-1 Lisp is a single-word with a type in bits <0:4>

and an address or immediate datum in bits <5:35>. This is consistent with the
S-1 Mark IIA pointer format.

The data types are defined as follows:
Type Use within S-1 Lisp

0 Positive fixnum
1 Unused
2 Unbound marker
3 Self-relative
4 Program Counter
5 Program Counter
6 Program Counter

48

7 Program Counter
8 GC Pointer (used only by the garbage collector)
9 reserved

10 Named vector (user data structure)
11 Named array (user data structure)
12 Halfword (immediate) floating-point number
13 Singleword floating-point number
14 Doubleword floating-point number
15 Tetraword floating-point number
16 Halfword complex floating-point number
17 Singleword complex floating-point number
18 Doubleword complex floating-point number
19 Tetraword complex floating-point number
20 Extended number
21 Code pointer
22 Procedure or stack group
23 Array
24 General vector
25 Specialized vector
26 String (vector of string-characters)
27 Character
28 Symbol
29 Pair (cons cell)
30 Empty list
31 Negative fixnum

Subtypes of vectors and arrays are encoded in the header word of the object.
The subtype of a vector depends on the types of its components. These subtypes
are pointer, bit, and numeric data types. The numeric data types are the quarter-
word integer, the halfword integer, the singleword integer, the doubleword integer,
the signed byte integer, the unsigned byte integer, the halfword floating-point, the
singleword floating-point, the doubleword floating-point, the tetraword floating-
point, the halfword complex floating-point, the singleword complex floating-point,
the doubleword complex floating-point, the tetraword complex floating-point, the
halfword complex integer, and the singleword complex integer.

The subtypes of arrays are the same as those of vectors.

§ 2.5 S-1 Lisp 49

Numbers are represented internally in a variety of ways in order to conserve
space and time for common situations. In particular, integers in the range ¡−231,
231− 1] as well as halfword floating-point numbers are represented in an ‘imme-
diate’ format so that one need not allocate heap storage when such numbers are
generated. Numbers are also represented in fixed-precision multiple-word formats
and in indefinite-precision formats. The details are given below.

Numbers may be divided into scalars and complex numbers. Complex num-
bers are represented as pairs of scalars in one format or another. Scalars may be
divided into integers, ratios, and floating-point numbers. These three classes are
further subdivided by internal storage types. All classes of numbers have provision
for a representation with indefinitely large precision.

Data type 0 is used for positive integers, and data type 31 for negative inte-
gers. This implies that an immediate integer is in fact in true two’s-complement
form and can be utilized directly by arithmetic instructions. (The results of such
instructions must, however, be range-checked; they cannot in general be assumed
to have this format.)

Floating-point numbers come in five representations: halfword, singleword,
doubleword, tetraword, and indefinite precision. The first is an immediate data
type; the half-word floating-point value is stored in the low eighteen bits of the
pointer. In the singleword, doubleword, and tetraword representations, the pointer
simply points to a singleword, doubleword, or tetraword containing the hard-
ware data format. Indefinite-precision floating-point numbers are represented in
extended-number format.

Similarly, complex numbers come in five formats. Those whose components
are halfword floating-point numbers are represented as singlewords, those whose
components are singleword floating-point numbers are represented as doublewords,
those whose components are doubleword floating-point numbers are represented
as four consecutive words, and those whose components are tetraword floating-
point numbers are represented as eight consecutive words. In each case the rep-
resentation consists of the real part followed by the imaginary part in standard
floating-point format; the pointer points to the first of the words. A general
complex number is a kind of extended number.

50

2.5.4 Systemic Quantities Vector

To speed up various operations, a vector of commonly referred to constants
and procedures is pointed to by a register dedicated to the purpose. This vector
contains the quantities T, (), the locks mentioned above, constants defining the
sizes of some objects, the addresses of the CONSers, and addresses of routines
that allocate, de-allocate, and search special lookup blocks on the stack. Calling
these routines is inexpensive compared to the cost of a normal procedure call.

2.5.5 Function Calls

All arguments are passed on the stack. Temporary storage for each function
is also on the stack. Six stack slots are allocated for the basic function call: a slot
for one returned value (multiple values are handled separately), a spare PC slot,
the return PC, an old temporaries pointer slot, an old closure pointer slot, and
an old frame pointer slot. The arguments, pointer temporaries, and nonpointer
temporaries are above these slots.

Self-recursive calls go to a distinguished label at the front of the compiled
code. This saves an indirect memory reference through the function cell. The
pipeline hardware can value-predict the new PC; this allows the pipeline to proceed
more smoothly than it does in the indirect memory-reference case. However,
tracing such calls is not possible.

2.5.6 Remarks

The S-1 supports PDL-allocated numbers in much the same fashion as
MacLisp.

51

2.6 Franz Lisp

Franz Lisp was written at the University of California at Berkeley by Richard
Fateman and his students. It was originally intended to be a Lisp that was suitable
for running a version of MACSYMA on a Vax. It evolved into one of the most
commonly available Lisp dialects on Unix machines.

2.6.1 Data Types

Typing is done with a BIBOP scheme using 512-byte pages. Pointers of the
same type are allocated on a single page, and for each page there is a table entry
that indicates the type for pointers on that page. There may be many pages for
each type.

2.6.2 Function Call

Franz supports both a normal function call and a local function call. On
the Vax, normal function calls use the Vax CALLS instruction for compatiblity
with other languages. With local function compilation, a function invocation
can be implemented by a JSB on the Vax directly to an entry point if enough
information is known at compile time. This totally inhibits debugging, generally
hides the name of the local function from functions not compiled ‘at the same
time,’ and is very fast. In Franz one does (declare (localf tak)), for example, to
declare a function as local.

In the tables that appear later in this report, LclfYes means that the functions
in the benchmark were declared local, and LclfNo means they were not so declared.

When a reference to a function is made in a normal function call, that ref-
erence is made through a table of transfer vector pairs, where each pair is of the
form <name location>. Name is the name of the function and location is the
address of the code to which to jump.

For a function, FOO, this pair is initially <FOO QLINKER>. QLINKER is
a general calling routine that refers to the atom’s (FOO’s) function definition cell.
There is a flag, TRANSLINK, that can be set to influence the use of this transfer
table. TRANSLINK can be set to either T or ().

If the function definition is binary code (where the appropriate address is
BCD-FOO) and if TRANSLINK = T, then the pair in the table is updated to be
<FOO BCD-FOO>.

52

The next time FOO is invoked, the branch to QLINKER is avoided, and the
invocation goes much faster.

If FOO is not compiled or if TRANSLINK = (), then the transfer table
remains unchanged, and the overhead of going through QLINKER is present each
time FOO is called.

Setting TRANSLINK to T leaves somewhat less information on the stack, so if
there is an error, the backtrace function has to work harder to find out the sequence
of function-calls leading to the current state. Also, if FOO’s definition cell is
changed, a relinking has to be done. Implementationally, a reference to an entry
in the table is resolved at load-time, so that no searching of the TRANSLINKs
vector table need be done at runtime.

In the tables, TrlOn means that TRANSLINK = T, and TrlOff means that
TRANSLINK = ().

2.6.3 Data Representations

All numbers are boxed. The compiler will open code fixnum operations in
compact arithmetic expressions, but generally numbers are reboxed right after
they are created. BIGNUMs are represented as lists of fixnums with a special
‘BIGNUM-type’ object at the head.

CONS cells are 8 bytes; the CDR is first because CDRs are more common
than CARs, and this permits a CDR operation (without type checking) to be done
with an indirect addressing mode.

An array is a very general data structure in Franz. A user-definable function
is called to interpret the indices on each array reference. A vector data type exists
for fast unidimensional array-like operations.

2.6.4 Remarks

In the benchmark runs, the Vax 11/750 and Vax 11/780 had 2–4 megabytes
of physical memory. The MC68000 machines were 10 megahertz SUN II machines.

Franz programs try to be good time-sharing neighbors. Programs start inside
a small Lisp, and when space gets short, that Lisp grows as needed. It is very
easy to reduce the garbage collection time by preallocating space so that fewer

§ 2.6 Franz Lisp 53

garbage collections occur. Thus comparisons that include the garbage collection
times may not be as meaningful if the fastest possible runtimes are desired.

54

2.7 NIL

NIL (New Implementation of Lisp) was done at MIT for the Vax family of
computers. Originally designed as the first modern Lisp dialect on stock hardware
after the development of Lisp-machine Lisp at MIT, it went on to become one of
the main influences on the design of Common Lisp.

2.7.1 Data Types

In NIL, a pointer is 32 bits long. Five bits are type bits, and 27 are for
address (in nonimmediate objects) or immediate data. The type bits are divided
between the low two and high three bits in the 32-bit longword. This permits the
‘address bits’ to be in the correct position to be longword addresses—the VAX
is byte-addressed, and NIL allocates storage in longword units. In effect, fewer
than 3 bits of addressability are lost, rather than 5. This also permits address
arithmetic to be used for operating on the data of a CONSed object. For instance,
the type code of a CONS cell happens to be just 1, and the CAR and CDR are
in two consecutive longwords. So to get the CAR of register r6 into register r7,

movl -1(r6),r7

and likewise, CDR is

movl 3(r6),r7.

To add two Lisp single-floats in r6 and r7, machine-number answer in r0,

addf3 -float-type(r6),-float-type(r7),r0

where float-type is the value of the type code of a single float.

There are a number of special assignments and special cases for the type
codes. One of the most important is for fixnums. A pointer is a fixnum if the
low two bits are 0. In effect, eight possible type code assignments are relegated
to fixnums. The result is that NIL represents 30-bit fixnums without CONSing.
Conversion to and from a machine number is done with a single arithmetic shift
(ASHL) by −2 or 2. Addition and subtraction can be performed on the pointers
directly, producing a pointer result. Multiplication needs to shift only one of the
two arguments to produce a pointer result. Another result of this implementation
of fixnums is that a fixnum index need only be added to the base address of a

§ 2.7 NIL 55

vector whose unit size is a longword such as a Common Lisp simple vector; it need
not be shifted first.

The Vax user address space is loosely segmented into P0 (program) and P1
(stack) spaces. (These two make up one half of the Vax addressability. The other
half is ‘system’ space.) The address field of a NIL pointer permits addressing the
low half of P0 space. By selecting the type bits accordingly, one can, however,
represent objects in other parts of the address space if the mask used to clear
the type bits is different from the type code and if the appropriate high type
bits are present in the type code itself. NIL represents ‘stack vectors,’ which are
simple vectors allocated in the high half of P1 space where the NIL stack lives in
the following way. There are two simple-vector type codes—one for heap-allocated
vectors and one for stack-allocated vectors. The type code assignments are chosen
so that there is a single mask that clears either one of the type codes, producing the
correct address. (Stack vectors are important for a number of things, particularly
for doing efficient &REST arguments without CONSing.)

The fact that 5 bits are used for type code means that there are 32 different
primitive types; therefore a single longword mask can be used to represent the
union of a number of these types. As a result, the computation of

(typep x ’(or single-float double-float))

is identical to

(typep x ’(or single-float double-float short-float long-float))

except for the mask used.

There is also an extended-number type, which implements BIGNUMs, ratios,
and all the complex types.

2.7.2 Function Call

A compiled function is a typed pointer whose address points to a VAX pro-
cedure. It is called using the Vax CALL instructions. Function cells contain only
the address, not the type bits, so getting to the function is done by ‘evaluating’
the function (identical to the way in which special variables are evaluated) and
doing CALLS on the result. The procedure exits with the RET instruction.

56

The arguments to the function are passed on the stack in standard Vax style;
in addition, three ‘hidden’ arguments are passed. As a result, the current NIL can
pass a maximum of 252 Lisp arguments to any function.

The caller of the function does not need to know whether the called function
takes &OPTIONAL and/or &REST arguments because all functions are called
identically. When the function is entered, it may move arguments from the argu-
ment list into their eventual locations or ‘homes.’ For instance, PRIN1 with an
argument list of

(object &optional stream)

has a home for the variable OBJECT in the argument list, and STREAM is in the
local stack (like a LET-bound variable). Checking the number of arguments and
moving some into their homes elsewhere on the stack is done by special out-of-line
subroutines except in simple cases. At the primitive function-calling level, &REST
arguments are passed as stack-allocated vectors that might later be copied into
a list if necessary. &KEY passes off this vector to something else that, given a
data structure describing the &KEY part of the lambda-list, parses the keyworded
arguments into another locally-allocated stack-vector.

NIL functions are compiled as position-independent code. Functions are
grouped together by the compiler into a single compiled-code module that con-
tains a table of quoted constants and value cells. One of the function-entry actions
is to load a register called FLP with the base address of this table. So a function

(defun foo () ’foo)

does

movl n(flp),ar1

to return the symbol FOO. This also means that there is no patching of the
compiled code when the file is loaded—the code portion of the module is copied
directly from the VASL (compiled NIL code) file. The FLP register is saved and
restored around every function call by using the Vax procedure call entry-mask
mechanism. The value saved in the highly structured Vax stack frame is used by
the garbage collector to find the compiled code module so that it knows how to
relocate saved PC’s it finds on the stack.

§ 2.7 NIL 57

2.7.3 Storage Management

NIL has just one amorphous heap from which everything is allocated.
Garbage collection is by stop-and-copy.

2.7.4 Generic Arithmetic

The more common generic arithmetic functions are implemented as
MACRO32 routines for efficiency. The arguments are checked for being numeric,
and a special ‘contagion code’ is returned. A contagion code is a small integer
assigned such that for multiple arguments, the maximum value of the contagion
codes of the arguments defines what the type of the result will be. The routine
(e.g., PLUS) dispatches to a piece of code that deals specifically with that type
and runs each argument if necessary (as it is for floating point) through a special
routine designed specifically for doing the conversion necessitated by contagion.
Many of the types are not handled by the MACRO32 routines; for instance, most
BIGNUM, rational, and complex arithmetic is written in Lisp. Some simple things
like comparision or some logical operations on BIGNUMs are just done directly
in the MACRO32 code, however. Some of these special subroutines are accessible
to Lisp code—SIN and COS, for instance, are all written in Lisp. To deal with
the varied floating-point types, special floating-point operators are used.

58

2.8 Spice Lisp

Spice Lisp is an implementation of Common Lisp written mostly in Common
Lisp and partly in microcode. The initial implementation of Spice Lisp was done
by the Spice Lisp Group at Carnegie-Mellon University (CMU) on the Perq, a
user-microcodable machine built by Perq Systems Corporation.

2.8.1 Data Types

The Perq is a 16-bit machine, but the Lisp instruction set deals with 32-bit
immediate and pointer objects. The typing scheme described here will probably
be retained in other implementations of Spice Lisp. The most significant 5 bits
of a 32 bit-object determine its type. Immediate objects (such as characters and
fixnums) use the low-order bits to hold information.

Type (5) Immediate Data (27)

Pointer objects (such as CONSes and arrays) have an additional 2-bit space
field below the type field. All 32 bits are used as the virtual address of a piece of
storage.

Type (5) Space (2) Other Address Bits (25)

Fixnums and short floats use two consecutive type codes each to encode
positive and negative numbers. This yields 28 bits of precision. Fixnums look like
this:

Type (4) Two’s Complement Integer (28)

And short floats like this:

Type (4) Sign (1) Exponent (8) Mantissa (19)

CONSes are pointer types. Two consecutive words of storage at the virtual
address specified by the pointer hold the CAR and CDR of the CONS.

§ 2.8 Spice Lisp 59

There are several different kinds of arrays in Spice Lisp. General vectors (or
G-vectors) are fixed-size, one-dimensional arrays of Lisp objects. The first word
of a G-vector is a fixnum indicating its size in 32-bit words, the second word is
element 0, the third word is element 1, and so on. Integer vectors (I-vectors) are
fixed-size arrays of small integers. They range in size from 1 to 16 bits. The first
word of an I-vector indicates its size in 32-bit words, and the second word indicates
the size of each element and the number of elements; the entries are packed right
to left in the words that follow. Strings are identical to I-vectors in format and
have a fixed-element size of 8 bits.

The Spice Lisp instruction set on the Perq implements a stack architecture.
The Perq Lisp instruction set does full runtime type checking, ensuring debugga-
bility of compiled code. There are no type-specific instructions for arithmetic, just
generic instructions that dispatch off of the types of their arguments. This frees
the programmer from writing verbose declarations to get the compiler to emit the
right instructions, but since the Perq hardware does not support type checking in
parallel, it does incur a runtime penalty.

Because references to virtual memory are so expensive on the Perq, much
can be gained by adding a few registers to the stack architecture. By keeping
often-used arguments, local variables, constants, and special variables in regis-
ters, the number of memory references can be cut drastically. Adding instructions
to manipulate four 32-bit registers and a compiler pass that endeavors to iden-
tify frequently used values to put in registers resulted in a 30% speedup for the
PUZZLE benchmark.

2.8.2 Function Calls

There is no ‘fast function call’ in Spice Lisp—stack frames have a uniform
format and contain enough information to debug compiled code, and functions
may be redefined (or traced) at any time. Function call is done by the following:

1. Pushing a stack frame header, which contains the function
to be called, the current stack frame, and other informa-
tion. This new stack frame becomes the ‘open frame.’

2. Pushing the arguments to the function.

60

3. Activating the frame by making the open frame the active
frame, by stashing the next PC in the current function in
the PC slot of the call frame, and by making the function
that it contains the current function.

In the third step, the microcode checks to see that the function is being
called with the proper number of arguments, and if the function can take different
numbers of arguments, it selects an entry point. The called function then defaults
any unsupplied optional arguments and bumps the stack pointer to allocate space
for local variables. A call frame looks like this:

Frame Header
Function

Previous Active Frame
Previous Open Frame

Previous Binding Stack Pointer
Saved PC of Caller

Argument 0
Argument 1

. . .
Local 0
Local 1

. . .

If a function tries to return multiple values, the microcode looks at the stack
frame’s header word, which indicates whether or not the caller is expecting mul-
tiple values. If the caller is not expecting multiple values, only the first value is
returned.

CATCH and THROW are implemented in much the same way as call and re-
turn (indeed, the microcoded instructions share a good deal of code). The CATCH
instruction creates a catch frame, which looks much like a call frame except that
the function that created the catch frame takes the place of the ‘function to be
called,’ and the PC of the code to be executed when the catch frame is thrown to
takes the place of the ‘return PC.’ A catch frame looks like this:

§ 2.8 Spice Lisp 61

Frame Header
Function

Active Frame at Time of Catch
Open Frame at Time of Catch

Binding Stack Pointer at Time of Catch
Jump PC in Case of Throw

Previous Catch Frame
Throw Tag

The catch frames are linked through the ‘previous catch frame’ field, so when
a throw is done, the microcode just traces through the previous catch frames
looking for the given throw tag. When it finds such a frame, it ‘returns into it.’
The ‘active catch frame’ is kept in a register.

2.8.3 Remarks

The Perq has no hardware for virtual memory, but the Accent operating
system (under which Spice Lisp runs) provides microcode to translate virtual ad-
dresses to physical addresses and Pascal code to service page faults. The language
microcode on the Perq (one instruction set for Pascal, C, and Ada, and another
for Lisp) caches a few recent virtual address translations in registers. This signif-
icantly reduces the number of times the microcode address translation routines
need to be called. However, the time it takes to verify that a translation is correct
and to construct a physical address from it almost quadruples the time it takes
to access memory.

The performance degradation between TAK and TAKR shows the effect of
these translation caches. The TAKR benchmark is intended to defeat the benefits
of a cache memory (which the Perq does not have) but manages to defeat address
translation caches as well.

Because Accent is intended to be a ‘general purpose’ operating system sup-
porting many languages some things such as the the paging algorithms are not
particularly tuned towards Lisp. As more functionality and performance enhance-
ments have been added to the Accent kernel, the performance of Spice Lisp has
improved. When code was added to write dirty pages out to the disk a whole
track at a time, many of the CONS-intensive benchmarks shown here improved
significantly.

62

The benchmarks were run on a Perq T2 with 2 megabytes of physical memory,
a landscape (1280 by 1024 pixels) display, and a Micropolis 5.25 inch, 80 megabyte
disk drive. Times reported are real time, with a resolution of one sixtieth second.
The Perq microengine runs at approximately 170 nanoseconds per cycle. Memory
is referenced up to 64 bits at a time in 680-nanosecond cycles.

The TPRINT benchmark was run with *Print-Pretty* set to NIL, and
output directed to a Spice Typescript window 50 lines tall and 83 columns wide
(approximately 8.5 by 9 inches).

63

2.9 Vax Common Lisp

Vax Common Lisp was the first Common Lisp implemented on stock hard-
ware. It runs on all of the DEC Vax models under the VMS operating system.

2.9.1 The Basic Strategy

The basic strategy behind this implementation was to bring up a Common
Lisp on the Vax rapidly by piggybacking on the Spice Lisp system. To do this,
a postprocessor was written that takes the output of the Spice Lisp compiler
and produces Vax instructions. This output is a sequence of Spice Lisp byte
codes—a machine language for a stack-based Lisp machine. The postprocessor
maps (translates) each byte code into a sequence of Vax instructions; each byte
code expands into 1–5 Vax instructions and possibly a call to a Bliss routine that
performs the operation specified by the byte code. Then a peephole processor
optimizes the output from the mapper.

2.9.2 The Vax Stack

The Vax architecture supports a stack that occupies one half of the address
space. Since Lisp requires both a large address space and a large stack, it is
natural to try to use this stack.

There are some problems for Lisp with the architecturally supported stack.
This stack is used by the call instructions that the Vax supports, and using that
stack implies using those instructions. In the Vax Common Lisp, the function-call
mechanism does not use CALLS or CALLG. This choice is also made by Portable
Standard Lisp. A major problem with CALLS/CALLG is that these instructions
place PCs with flag bits in the stack. This means that the garbage collector, which
examines the stack, must be able to locate these objects. Usually that means that
they must be marked or linked together, adding overhead to function-call.

2.9.2.1 Vax Common Lisp Function Call

All arguments and return values are passed on the stack. Frames, which con-
tain sufficient information to reconstruct the dynamic and lexical environment of
each call, are created on every function call. Lisp code is completely interruptable:
Between any two instructions both the instructions themselves and the stacks may
move (due to a GC). There is no more overhead for a function with &OPTIONAL

64

than there is for one without, and there is no runtime dispatching on the number
of arguments for typical functions.

2.9.3 Types

2.9.3.1 The Vax Common Lisp Hybrid Scheme.

Vax Common Lisp uses a hybrid of BIBOP and tagging. A word on the Vax is
32 bits long. The two low bits are used to distinguish pointer (00), random (10),
fixnum (01), and short-float (11). A random object is a short immediate object
that is small enough for the object and subtype bits to inhabit the remaining 30
bits; character objects are an example of a random type. This has an advantage
in that fixnums are immediate and type-checking them is fast and simple.

A BIBOP scheme is used for allocated objects (pointer objects), so determining
the type of an allocated Lisp object consists of shifting to get a page index and
looking at a table entry. Objects can be allocated in read-only, static, or dynamic
spaces, and there’s a table for that as well.

Determining the type of a pointer object requires clearing the top thirty bits,
testing the bottom two, shifting the original pointer right to get a page address,
and then comparing an indexed location in a table to a constant.

2.9.4 Data Representations

Fixnums are two’s complement and 30 bits long within a 32-bit word;
BIGNUMs are also two’s complement and are allocated in longword chunks.

There are three floating point types corresponding to VAX F, G, and H types.
Ratios are two cells. Complex numbers are not supported. CONSes are two cells.
Simple-vectors are consecutive cells with a 1-longword header. Simple-strings and
one-dimensional simple-arrays of fixnums elements are consecutive bytes with a
2-longword header. Multidimensional arrays have an array header. Array indices
are always recalculated on each access and store.

2.9.5 The Compiler

As noted, the compiler is based on the CMU Spice compiler. The Vax Com-
mon Lisp compiler does not do any sophisticated register allocation, and none of
the benchmarks were declared to have any in-line routines.

§ 2.9 Vax Common Lisp 65

2.9.6 Running the Benchmarks

Each test was run in a separate Lisp with 3 megabytes dynamic space. Be-
cause a copying garbage collector is used, this leaves 1.5 megabytes available at
any time. Fixnum or simple-vector declarations were added where appropriate,
and the benchmarks were compiled for maximum speed and minimum safety.

The Vax 8600 is a pipelined ECL gate array Vax. During its development it
was code-named ‘Venus.’

66

2.10 Portable Standard Lisp

Portable Standard Lisp (PSL) is a ‘LISP in LISP’ that has been in develop-
ment at the University of Utah since 1980 and at Hewlitt-Packard since 1982. It
has its origins in Standard Lisp [Marti 1979] and in the Portable Lisp Compiler
[Griss 1982]; both were used to implement an efficient Lisp interchange subset on
a wide range of machines. The compiler has also been used by others as a basis
for compilers for their own Lisps, (for example by Charles Hedrick for Elisp at
Rutgers).

PSL was started as an experiment in writing a production-quality Lisp in
Lisp itself as much as possible, with only minor amounts of code written by hand
in assembly language or other systems languages. The key is the optimizing Lisp
compiler, which compiles Lisp with machine-oriented extensions (bit, word and
byte access, machine arithmetic, etc). The collection of these Lisp ‘subprimitives’
comprises a language called ‘SYSLISP,’ or ‘System Lisp.’ Many of the time-critical
parts in the PSL system are written in SYSLISP—the garbage collector and inter-
procedure-linkage functions, for instance. An early goal was efficient execution of
the system as a base for large computer-aided graphics design, computer algebra,
and computer-aided instruction programs.

Up to this point the PSL system has served a number of purposes:

1. An efficient portable Lisp for running large programs on
a number of machines, it is in use on extended addressing
DEC-20s, VAXes, CRAY-1s, various MC68000s (Apollos,
HP9836s, and IBM 370s).

2. An experimental system testbed for easy testing of new
binding models, garbage collectors, and evaluators.

3. A ‘library’ of modules to produce other Lisp-like systems.
The PSL system provides a number of alternative mod-
ules for the same function (such as a compacting garbage
collector and a copying collector). The DADO project at
Columbia is extracting modules and using the compiler as
a tool to explore a multiprocessor Lisp.

§ 2.10 Portable Standard Lisp 67

The PSL compiler has a number of passes, some of which were introduced to
aid in the portability:

1. Lisp macros expanded, and the Lisp source decorated with
type information.

2. Compilation of Lisp to an ‘abstract’ register machine whose
instructions are called ‘cmacros.’ Redundant loads and
stores are avoided by tracking register contents.

3. Essentially machine-independent optimization of the
‘cmacro’ form (jump optimizations, peephole, etc).

4. Expanding ‘cmacros’ into LAP for the target machine by
using pattern-driven tables.

5. Some peephole optimization of the target machine LAP.

6. Output of LAP in a number of different forms: a) in-core
assembly for direct execution, b) output as a FASL file for
later fast loading, or c) output as symbolic assembly code
for target machine assembler for bootstrapping.

A PSL implementation for a new machine consists of the following:

1. Choosing memory layout and tagging

2. Writing code generators and linkage routines to the sys-
tems language

3. Writing some IO primitives in assembly code or some other
systems language (C, PASCAL, and FORTRAN have been
used)

4. Testing primitives and code generators

5. Selecting an appropriate garbage collector

6. Cross-compiling a kernel (‘mini-Lisp’) to assembly code,
assembling, and linking on the target machine

68

7. Finishing up and tuning

2.10.1 Versions of PSL Mentioned in the Timing Tests

PSL 3.1 This was the original version circulated from Utah; the
kernel is written in RLisp syntax (an algebraic syntax). It
forms the basis of the Apollo DOMAIN product and the
IBM 370 version.

PSL 3.2 This is the current version available from Utah for DEC-
20s, VAXes, and MC68000s.

PSL 3.3 This is the version at HP in which all of the kernel is written
in Lisp syntax with no RLisp. The kernel is a complete
‘mini-Lisp.’

PSL 3.4 This is the latest version at HP. Based on a ‘microkernel’
that is only enough of a Lisp to support a storage alloca-
tor and a fast-loader facility, it is cross-compiled, and the
remainder of the system is loaded as compiled Lisp. New
modules support a Common Lisp compatibility package.
There are some improvements in function-linkage and in
the storage allocator.

2.10.2 Machines Mentioned in the Timing Tests

HP 9836 This is actually a family of machines, which is officially
called the HP9000, Series 200. It is Motorola MC68000-
based; it is a nonpaging machine. It runs with a 12Mhz
clock with 16Kbyte cache. Most of the timings were run
on 3.5 megabytes to 4.5 megabytes of physical memory.
The machine allows up to 8 megabytes of user memory.
Each Lisp item is 32 bits, with the tag in the top 5 bits.
No address masking is needed because it is an MC68000.
Two different operating systems were used: PASCAL and
HP-UX, the latter being HP’s Bell System 3 Unix. In the
charts, the PASCAL operating system times are denoted
by ‘PSL-HP200,’ and the HP-UX operating system times

§ 2.10 Portable Standard Lisp 69

are denoted by ‘PSL-HP-UX.’ These machines use a hand-
coded compacting garbage collector, which is very fast.

CRAY-1 The final timings were run on a 2-processor Cray-XMP.
The machine has 4 megawords of 64-bit-word physical
memory. It has a 9.5 nanosecond cycle time; the memory
time is 14.5 nanoseconds, but the actual times are unpre-
dictable due to interference between the two processors.
Each Lisp item is 64 bits; the tag is in the top 8 bits.
No masking is needed to do memory reference. There are
24-bit addresses; 22 bits are actually used for data, and
the extra bits are used by the compacting garbage col-
lector. The operating system is CTSS, which is used by
Los Alamos National Laboratory, Lawrence Livermore Na-
tional Laboratory, and a couple of others. This is the only
purely portable implementation (no tuning was done to
improve performance). One aspect that could be improved
is that there are four extra instructions for each procedure
call (out of five) to allow compiled code to call interpreted
code. If the compiler was told that the functions do not
require the interpreted-option linkage, there would be sig-
nificant speedup. There is a 300,000-item heap.

Vax 11/750 The Vax 11/750 used in the timings has 6 megabytes of
memory, hardware floating-point, and cache. Each Lisp
item is 32 bits, with the tag in the top 5 bits. Masking is
required to reference objects. PSL runs both in VMS and
BSD Unix, 4.x. There is a 400,000-item heap. A copying
garbage collector is used.

Vax 11/780 This machine had the same configuration as the Vax
11/750s. There is no difference at all in the code.

DEC-20 This machine has 5 megabytes of physical memory, cache,
and hardware floating-point. A Lisp item is 36 bits, and
6-bit tags are used (the extra bit is due to extended ad-
dressing). It runs the Tops-20 operating system. There is
a 256,000-item heap. It uses a copying garbage collector.

70

Apollo Dn300 This is an MC68010-based (10 MHz) workstation with no
local disk. Virtual memory paging is over a 10-megabit
Ring network. The machine has 1.5 megabytes of physical
memory. The PSL implementation is the same as that on
the HP 9836. The operating system is the Aegis operating
system, a Unix-like Apollo operating system. There is a
200,000-item heap. It uses a copying garbage collector.

Apollo Dn600 This is a dual MC68000-based (10 MHz) workstation; the
second processor is used for paging (hence, this is a virtual
memory machine). There is a 4 kilobyte cache, 2 megabytes
of physical memory, a local disk, and a hardware floating-
point processor. The PSL implementation is identical to
that on the DN300.

Apollo Dn160 This workstation uses a bit-sliced (AMD2903) implemen-
tation of an MC68000 architecture machine. The bit-sliced
CPU is microcoded to behave as an MC68000. It has fast
floating-point, a 4-kilobyte instruction cache, a 16-kilobyte
data cache, a 4-megabyte physical memory, and a local
disk. The PSL implementation is identical to that on the
DN300.

Sun The Sun timings were run on a Sun Workstation 2/120.
It uses the MC68010 processor, runs with a 10Mhz clock,
and has 3 megabytes of memory. It is a virtual memory
machine allowing up to 16 megabytes per process. The
operating system is BSD Unix 4.2. Each Lisp item in Sun
PSL is 32 bits with the tag in the top 8 bits. A copying
garbage collector is used.

IBM 3081 The 3081 timings were run on the IBM Palo Alto Scien-
tific Center model D 3081. It has a 64 Kilobyte instruction
cache, a 64 kilobyte data cache, and a 16 megabyte mem-
ory. The CPU runs at 4–8 MIPS Aside from a different
use of tags during garbage collection, this implementation
is PSL 3.2.

§ 2.10 Portable Standard Lisp 71

2.10.3 Implementation Details

The implementation is biased towards fast execution of programs consisting of
many small compiled functions; debugging facilities and interpreter speed were less
important design considerations. All implementations mentioned have explicitly
tagged pointers with the tag in the high bits of the word. In some cases this means
that the tags have to be stripped to access the referenced item.

2.10.4 Data Types

PSL has the following data types: ID (symbols), FIXNUM, BIGNUM,
FLOAT, CODE, STRING, VECTOR (simple-vector), PAIR (CONSes), and IN-
STANCE (for ‘flavors’). Immediate numbers (INUMS) use a trick in that positive
INUMs have a 0 tag, and negative INUMs have a −1 tag, which allows arithmetic
to proceed without tag modifications.

CONS cells are represented as a pair of sequential items. A pair points to the
CAR, and the CDR is the next word. Fixnums are a pointer to a 2-word heap
element; the first says that it is a heap item and the second is the fixnum. Vectors
are implemented in a similar manner with a 1-word heap item that contains the
tag and the length of the vector and with an n-element contiguous block of heap.
Arrays are simply vectors of vector pointers, so there is no packing. Floats are all
double precision—once again with a 1-word heap item and two words of data.

The function types are:

EXPR: fixed number of EVALed arguments, no checking
for the correct number of arguments passed

NEXPR: variable number of EVALed arguments collected
in a list

FEXPR: variable number of unEVALed arguments col-
lected in a list

MACRO: entire form passed to expansion function

Symbols have four cells: value, function, name, and property-list. The func-
tion cell contains either an executable instruction or a code address, depending
on the implementation; the address or instruction goes either directly to the head
of compiled code or to an auxiliary function for interpreted or missing functions.

72

2.10.5 Function Call

Compiled-to-compiled function-call consists of loading registers with the ar-
gument values and performing a CALL (or JUMP in tail-recursion-elimination
situations) to the function cell. All implementations use five real registers for
passing arguments; the rest go into the stack. The only other stack overhead is
the return address.

Each function is responsible for saving its own parameters if needed. Some
functions do all their computation from the registers and will need no stack at all;
others allocate a small stack frame into which the compiler allocates temporaries
as needed.

PSL is properly tail recursive.

73

2.11 Xerox D-Machine

All three members of the Xerox 1100 family are custom-microcoded proces-
sors. The INTERLISP-D virtual machine is built around a compact 8-bit byte code
instruction set, the opcodes of which are implemented by a combination of mi-
crocode and macrocode. Not all byte codes are supported directly in each member
by microcode; the alternative is a trap out to a standard Lisp function. Above
the level of the instruction set, all three members of the family appear identical to
the INTERLISP-D programmer. The implementation is such that a memory image
can be compatibly run on any of the machines without any change.

2.11.1 Data Types

An INTERLISP pointer is an address in a 24-bit virtual address space; a quan-
tum map indexed by the high bits of the address provides information for type
decoding. Additionally, litatoms (symbols) and immediate numbers (integers in
the range of−216 to 216−1) live in a reserved portion of the address space; integers
of larger magnitude (within the range −231 to 231−1) are ‘boxed’; floating-point
numbers, which are in IEEE 32-bit format, are also boxed. All three machines
have a 16-bit memory bus and 16-bit ALU; however, the byte codes tend to hide
the actual word size from the programmer. The virtual address space is broken
down into units of 512-byte pages, and the three machines have different degrees
of hardware assist for virtual memory management and instruction fetch.

CONS cells are CDR-coded in a manner described in [Bobrow 1979]. A cell
of 32 bits is used to store a CONS—typically 24 bits for the CAR and 8 bits for
an encoding of the CDR. The encoding covers the four cases where (1) the CDR
is NIL, or (2) the CDR is on the same page as the CONS cell, or (3) the CDR is
contained in another cell on the same page as the CONS cell, or (4) the CONS
cell is itself a full indirect pointer, which can address an ordinary two-cell slot on
any page (the space normally used for the CAR is used to address a 64-bit cell
elsewhere; this is to allow for RPLACD’s when there are no more free cells on the
same page as the cell being updated). All CONS cells, independent of how they
are created, are CDR-coded, and as a consequence the ‘average size’ of such a cell
is considerably less than 64 bits.

Strings and arrays are implemented as a fixed-length header with one field
pointing to a variable-length memory chunk taken from an area that is separately
managed. To run some of the benchmarks, we used INTERLISP’s Common Lisp

74

array utility package. Additionally, INTERLISP permits the user to define new
first-class fixed-length data types with corresponding entries in the quantum map
mentioned above; for example, a stream is implemented as a record structure with
19 pointer fields and assorted integer fields of 16 bits or less.

Garbage collection is patterned after that described in [Deutsch 1976]. A
reference count is maintained for every collectible pointer (in addition to imme-
diate pointers, litatoms are not reclaimed in INTERLISP-D). Updates to nonstack
cells in data structures (i.e., the CAR slot of a CONS cell or the value cell of
a global variable) require updates to the reference count. The reference counts
are maintained separately from the objects in a hash table that is generally very
sparse, and the updating is normally done within the microcode that effects the
update operations. Reclamations are performed frequently. These involve scan-
ning the stack area and augmenting the reference counts by a ‘stackp’ bit; then
scanning the reference count table reclaiming any entry that has a count of 0
and no reference from the stack (and possibly additional pointers whose reference
count goes to zero as a result of such a reclamation); and finally re-scanning the
table to clear the ‘stackp’ bits. The scan through the reference count table looking
for 0-count entries corresponds roughly to the scan of the marked-bits table in a
Mark-and-Sweep collector; however, the scan of the stack is infinitesimal in time
compared with a full ‘mark’ phase, and thus a reclamation typically runs in well
under a second.

The internal architecture of the stack is a variant of the ‘spaghetti stack’
model described in [Bobrow 1973]. The stack area is currently limited to 128KB.

The particular configurations upon which the benchmarks were run are as
follows:

Xerox 1100 (Dolphin) 4k words of 40-bit microstore; microinstruction
time 180ns; hardware assist for macroinstruction fetch;
hardware memory map for up to 8MB of virtual space;
hardware stack (for stack top); memory access is 1–4 words
(64 bits) in about 2µs. The particular unit used in the
benchmarking runs had 1.8MB of real memory attached,
but 2MB has been in standard delivery.

§ 2.11 Xerox D-Machine 75

Xerox 1108 (DandeLion) 4k words of 48-bit microstore; microinstruc-
tion time 137ns; hardware assist for macroinstruction fetch;
hardware assist for virtual memory management (memory
map is kept in nonpaged real memory); memory access is
one nonmapped 16-bit word in 411ns, but a random 32-bit
cell access in about 1.2µs. The stack is held in real, non-
mapped memory. The particular unit used in the bench-
marking runs had 1.5MB of real memory attached.

Xerox 1132 (Dorado) 4k words of 34-bit high-speed ECL microstore;
microinstruction time 64ns; hardware instruction fetch
unit; hardware memory map for up to 32MB of virtual
space; 4k words of high-speed ECL memory cache permit
memory access of one 16-bit word in 64ns, and a cache-
reload of 256 bits takes about 1.8µs (additional details
on the cache and memory organization may be found in
[Clark 1981]. The particular unit used in the benchmark-
ing runs had 2MB of real memory attached.

Note that the benchmarks were not run on the 1108-111 (DandeTiger), which
has considerably more memory and control store than the basic 1108 and which
also has a floating-point processor.

76

2.12 Data General Common Lisp

Data General Common Lisp is an implementation of Common Lisp that runs
on the entire line of Data General MV-architecture computers. It runs under both
the AOS/VS and MV/UX (hosted UNIX) operating systems. Future releases will
also run under the DG/UX (native UNIX) operating system.

2.12.1 Implementation Strategy

In order to bring up a Common Lisp system quickly, a small, internal Lisp
system was used to import much of the code from the Spice project at CMU.
While a good deal of the code was used as it was, some important sections were
changed significantly. For example:

1. a third pass was added to the compiler, and all code gen-
eration is delayed until then,

2. a LAP (Lisp Assembly Program) language was designed
that was more appropriate for the MV machines than the
Spice byte-codes originally emitted by the compiler,

3. the source-to-source transformation capabilities of the
compiler were enhanced,

4. arrays, numbers, and I/O, among other things, were re-
implemented.

2.12.2 MV Memory Structure

MV Memory Structure Memory on an MV is partitioned into 8 segments,
or rings; these rings are used to implement a protection scheme. Code and data
become more secure as they move to lower numbered rings; for example, the
operating system kernel runs in ring 0, whereas typical user code runs in ring 7.
Words on the MV are 32 bits long; half-words are 16 bits, and bytes are 8 bits.
Pointers to memory are one word long, and may access memory in one of two
granularities: half-words or bytes. In any word, bit 0 is the most significant
bit and bit 31 is the least significant. Pointers to half-words are constructed as
follows:

§ 2.12 Data General Common Lisp 77

Ind (1) Ring (3) Offset within the named ring (28)

where Ind is an indirect indicator that is 0 if the pointer is not to be indirected
and 1 if it is. Byte pointers are essentially half-word pointers shifted left one bit.
That is, there is no indirect bit, the ring bits inhabit bits 0–2, and the offset is
specified using bits 3–31. The per-ring available address space is 512 megabytes.
The granularity of access depends upon the type of pointer used.

2.12.3 Typing Scheme

A ‘pointer’ in DG Common Lisp is 32 bits long and is used for one of two
purposes: to actually point at a Lisp object (e.g., a CONS cell), or to encode
an immediate datum. All Lisp objects are aligned on 32 bit boundaries, so half-
word pointers provide a sufficient addressing mechanism. Pointers never have the
indirect bit on.

DG Common Lisp uses the BIBOP typing scheme. While many implementa-
tions use tag bits in the pointer to differentiate between immediate and pointer ob-
jects and then use the BIBOP scheme to find the type of pointer objects, through
the judicious use of the indirect and ring-selector bits, which are ignored by the
hardware in certain situations, it is possible to use the BIBOP scheme for all ob-
jects. Furthermore, this scheme allows many objects (e.g. fixnums, short-floats,
pointers) to be represented in a format that is directly usable by the machine.
There is no decoding necessary when processing these objects: to follow a pointer,
it is indirected through. To add two fixnums, the architectural ADD instruction
is used on the objects directly.

The MV series of computers and their operating systems require that the
type table used for BIBOP covers the entire address space. In order to keep
the type table relatively small and to facilitate fast typing memory is partitioned
into segments 32K words long; there are 64K such segments. To perform typing
operations, all Lisp pointers (whether or not they are pointers or immediates) are
treated as follows:

Segment (16) Offset within segment (16)

78

To determine the type, the high order half-word of the pointer is used to index
into the table. This style of BIBOP is often referred to as ‘scattered memory.’
A fixnum will be represented as the bits in the fixnum in the low order 28 bits,
and the indirect bit and three ring-selector bits configured in a bit pattern which
corresponds to the type ‘fixnum.’ Viewed as 32-bit addresses, all fixnums will start
with the same first four bits, and thus they will appear as if they were located in
a contiguous block of memory.

Note that the information in the type table will not change dynamically for
any entries other than the real pointer entries. For example, all table entries for
the ring that fixnums are mapped onto will return ‘type-fixnum’ when queried.
Hence, a significant space savings can be realized by simply creating one page in
the address space for each of the non-pointer types, and then mapping all pages
of table entries for each non-pointer type onto its one physical page.

2.12.4 Object Allocation and Garbage Collection

All objects that need to be allocated come from a common heap. Many
objects are not allocated, but are stored as immediate data. Examples of allo-
cated objects are CONSes, STRINGs, and ARRAYs. Immediate objects include
FIXNUMs, SHORT-FLOATs, and CHARACTERs. Object may be allocated in
any one of the dynamic, static, or read-only spaces, as in the S-1 Lisp implemen-
tation.

The garbage collector is stop-and-copy. Along with using static and read-only
spaces to help make collections faster, some heuristics are used to help determine
a good time to collect.

2.12.5 Function Call/Return

The standard MV CALL sequence proves to be unusable for Lisp function-call
for at least two reasons. First, the CALL instruction pushes the return addess
after the actual parameters. With the complex interfaces possible in Common
Lisp, this would force a rearrangement of the stack call frame by the callee in all
but the simplest cases. That is, suppose that a function can take some number
of optional arguments, and that some call to that function supplies none of these
optional arguments. If the standard MV CALL were to be used, it would push
the return address on the stack above the supplied required arguments. The
compiler generates references to variables allocated on the stack—variables like

§ 2.12 Data General Common Lisp 79

the optionals—by using a display for the stack frame. References to variables will
compile into constant displacements into the stack frame. If the optionals are
defaulted, their calculated values will need to be installed on the stack exactly
as if they were supplied by the calling function. However, the return address
pushed on the stack by CALL will occupy a place reserved for such an optional
argument. The return address pushed onto the stack will have to be moved, and
the computed optionals moved down the supplied required arguments will have to
be moved up, or else a more complicated and costly display management scheme
will have to be used. This problem is the same as the one faced by implementors
of Common Lisp on the Digital Equipment Corporation Vax series of computers
with the CALLS and CALLG operations.

Second, the CALL instruction pushes flags and other status information that
we would need to track in order to keep from confusing the garbage collector.

A call frame contains a return address, linkage to the previous frame, and
the function that is being invoked. After this information is pushed, the argu-
ments are evaluated and pushed. Control is then passed to the callee. Argument
canonicalization, if any, is performed by the callee.

An empty function call/return—that is, a call to a function with no arguments
and no body—takes less than 3.5 microseconds on an MV10000.

2.12.6 Dynamic and Non-local Exit

CATCH and targets of possible non-local exits (non-local GO or non-local
RETURN) cause frames to be pushed onto the stack; these frames are linked
together. When executing a THROW, a non-local GO, or a non-local RETURN,
a search for the proper catch or non-local target frame is done. This operation is
supported directly by the MV architecture.

2.12.7 Closures

Closures are implemented in such a way that access to any lexical variable
that is free in body of the closure is always done by a sequence of two machine
instructions.

2.12.8 Remarks

1. The MV family of computers currently has no microcode
support for any Lisp operations.

80

2. The benchmark results contained herein were gathered by
running DG Common Lisp on an MV10000 with 16 Mbytes
of physical memory, an MV8000 with 4 Mbytes of memory,
and an MV4000 with 8 Mbytes of memory.

3. Garbage collection was not disabled during the bench-
marks. Any time spent in the collector is included in the
total CPU time.

4. Type declarations were added to the benchmarks where
appropriate.

Chapter 3

The Benchmarks

The sections in this chapter describe each benchmark. For each benchmark
the following information is provided. The program itself is presented. The Com-
mon Lisp code always appears, and often the InterLisp code is presented. A
description of what the benchmark does is given, along with statistics on the
number of times each operation is performed by the benchmark. These statistics
were obtained by creating an augmented version of the benchmark containing ex-
plicit operation-counting instructions. The result is that the counts are accurate
and not estimated. Special instructions for people who may wish to translate the
benchmarks to other Lisp dialects are provided under the heading Translation

Notes.

The raw data is provided with each benchmark; this data is exactly as it exists
in the data base, which was built over the period of the benchmark study. In the
raw-data tables there are six columns, each of which contains either reported or
computed times for various classes of timings for each benchmark. Implementation
is the name of the implementation reported in that row; CPU is the CPU time;
GC is the garbage collection time; Real is the real time; and Paging is the amount
of paging time.

Some implementations report CPU+GC time only; some report real time
only. In the raw-data tables, implementations that report only CPU+GC times
are listed under Real time; these implementations are: InterLisp on the Vax 11/780
and Data General Common Lisp on the MV4000, MV8000, and MV10000 com-
puters.

3.1 Tak

The TAK benchmark is a variant of the Takeuchi function that Ikuo Takeuchi
of Japan used as a simple benchmark.16 Because Tak is function-call-heavy, it
is representative of many Lisp programs. On the other hand, because it does

16 Historical note: When the Computer Science Department at Stanford University obtained

the first two or three Xerox Dolphins, John McCarthy asked me to do a simple benchmark test

with him. We sat down, and he tried to remember the Takeuchi function, which had had wide

82

little else but function calls (fixnum arithmetic is performed as well), it is not
representative of the majority of Lisp programs. It is only a good test of function
call and recursion, in particular.

3.1.1 The Program

Here is the code for this program:

(defun tak (x y z)
(if (not (< y x))

z
(tak (tak (1- x) y z)

(tak (1- y) z x)
(tak (1- z) x y))))

We call this function as

(tak 18 12 6)

3.1.2 Analysis

When called on the above arguments, TAK makes 63,609 function calls and
performs 47,706 subtractions by 1. The result of the function is 7. The depth
of recursion is never greater than 18. No garbage collection takes place in the
MacLisp version of this function because small fixnums are used.

The following table is typical of the tables that will be used to report the
numbers of significant Lisp-level operations performed by the benchmark. The
previous paragraph and the following table convey the same information:

Meter for Tak
Item Count

Calls to TAK 63609
1−’s 47706
Total 111315

circulation. Because it was simple and because there were many results for it in the literature,

he felt that it would be a good initial test. Of course, John misremembered the function. But

we did not realize it until I had gathered a great many numbers for it. Alas, we are stuck with

this variant on Takeuchi.

§ 3.1 Tak 83

3.1.3 Translation Notes

Because TAK returns a fixnum, the declarations that were used for this func-
tion declared TAK to return a fixnum and X, Y, and Z to be bound only to
fixnums.

The function 1− takes a fixnum and subtracts 1 from it. When translating
to INTERLISP, ILESSP is used for < and SUB1 is used for 1−.

3.1.4 Comments

Because TAK was the first benchmark and because it is a simple program,
there are results for it on many machines and in several languages. They range
from a slow speed of 47.6 seconds for Franz Lisp on a Vax 11/750, using generic
arithmetic and doing slow function calls (a debugging setting) through a fast speed
of .048 seconds for an initial implementation of PSL on a Cray-1 at Los Alamos
National Laboratory. The fastest time for a full Lisp is on the S-1 Mark IIA
running a near-Common Lisp. The time is .29 seconds.

An interesting exercise was to handcode TAK on the PDP-10 in assembly
language and to compare that to Lisps on the PDP-10. To give an idea of the
degree of hand-optimization, allocating space on the stack was done by direct
addition to the register that holds the stack pointer; the variables x, y, and z
were kept in registers where possible, and subtracting 1 was accomplished by
the instruction MOVEI A,-1(A), which uses the addressing hardware to do the
arithmetic (this requires knowing that A will never contain a number larger than
18 bits long); pushing three things on the stack was done with a double-word
move and a single-word move; tail recursion was removed; and the termination
test (xy) was performed before each recursive call.

On a DEC 2060 this version took .255 seconds—which is faster than the
S-1 Mark IIA supercomputer running Lisp.

Here is a listing of the handcoded version:
tak1 caig a,(b) ;xy quit

popj p,
tak2 add fxp,[5,,5] ;allocate 5 slots. 3 for args, 2 for temporaries

dmovem a,-2(fxp) ;put a, b, c on the stack. add is push
movem c,(fxp) ;empty space, and the assumption of

;a large enough stack is used here.

84

;PUSH, ADJSP both do bounds
;checking. DMOVEM saves an instruction fetch
;and a decode.

movei a,-1(a) ;aa-1 using the address hardware.
Assumption is that 18 bit, non-negative arithmetic
is going on

caile a,(b) ;early quit? c already contains the right result.
;this early quit just unwinds the first arm of
;the conditional. Tak2 is the entry after that arm

pushj p,tak2 ;no go on
movem c,-4(fxp) ;save result on fxp
dmove a,-1(fxp) ;get y,z
move c,-2(fxp) ;and x
movei a,-1(a) ;sub1
caile a,(b) ;early quit
pushj p,tak2
movem c,-3(fxp) ;stash result
move a,(fxp) ;z
dmove b,-2(fxp) ;x,y
movei a,-1(a) ;sub1
caile a,(b)
pushj p,tak2
dmove a,-4(fxp) ;get first 2 results, the last already in c

;notice how the choice of c as the results
;register allowed us to hack the dmove’s here

sub fxp,[5,,5] ;flush temporary space
caig a,(b) ;early quit on tail recursion?
popj p, ;qed
jrst tak2 ;tail recursion

The original Takeuchi function, the one of which TAK is a variant, is

(defun takeuchi (x y z)
(cond ((> x y)

(takeuchi (takeuchi (1- x) y z)
(takeuchi (1- y) z x)
(takeuchi (1- z) x y)))

(t y)))

§ 3.1 Tak 85

3.1.5 Raw Data

Raw Time
Tak

Implementation CPU GC Real Paging
SAIL 0.48 0.00 0.85

Lambda 1.60 0.00
Lambda (MC) 0.19 0.00

3600 0.60 0.00
3600 + IFU 0.43 0.00
Dandelion 1.67 0.00
Dolphin 3.84 0.00
Dorado 0.52 0.00

S-1 0.29
PSL-SUN 1.44 0.00
PSL-20 0.48 0.00

PSL-3081 0.11 0.00
PSL-Cray 0.04 0.00
PSL-750 1.80 0.00

PSL-750 (VMS) 1.37 0.00
PSL-780 0.83 0.00

PSL-DN300 1.62 0.00
PSL-DN600 1.65 0.00
PSL-DN160 1.95 0.00
PSL-HP200 1.53 0.00
PSL-HP-UX 1.51 0.00

InterLispVax 780 3.08
MV4000 CL 2.47
MV8000 CL 1.89
MV10000 CL 0.89
3600 + FPA 0.43 0.00

750 NIL 4.16 4.16
8600 CL 0.45 0.00

86

Raw Time
Tak

Implementation CPU GC Real Paging
780 CL 1.83 0.00
785 CL 1.18 0.00
750 CL 2.69 0.00
730 CL 10.55 0.00
Perq 4.58

750 Franz
TrlOn & LclfYes 1.90 0.00
TrlOn & LclfNo 3.30 0.00
TrlOff & LclfYes 1.90 0.00
TrlOff & LclfNo 14.80 0.00

780 Franz
TrlOn & LclfYes 1.09 0.00
TrlOn & LclfNo 2.10 0.00
TrlOff & LclfYes 1.09 0.00
TrlOff & LclfNo 8.29 0.00

Franz 68000
TrlOn & LclfYes 2.37 0.00
TrlOn & LclfNo 3.67 0.00
TrlOff & LclfYes 2.35 0.00
TrlOff & LclfNo 15.10 0.00

InterLisp-10 2.08 0.00
LM-2 2.90

§ 3.1 Tak 87

The Dolphin times are with the display turned off; with the display on, the
time is 5.23 seconds elapsed. Generally, there is 25%–30% speedup with the display
off over the time with the display on. The Dorado is shown with the display off as
well; with the display on the time is .564. The improvement is generally around
7% on the Dorado. The DandeLion is shown with the display on. The times for
the 3600 and LM-2 were run with multiprocessing locked out during the actual
benchmarks.

In addition to the Lisp times, there are quite a few times for this benchmark
in other languages.

Tak Times
Implementation Time
On 11/750 in Franz generic arith (sfc) 47.6
On 11/780 in Franz generic arith (sfc) 27.6
On 11/750 in Franz generic arith 19.9
On 11/780 in Franz with generic (sfc)(TAKF) 15.8
On 11/750 in Franz fixnum arith (sfc) 14.1
On 2060 in INTERLISP (rc/swl) 13.288
On 2060 in INTERLISP (rc/swl) 12.7
On 11/750 in Franz generic arith (nfc) 11.6
On Dolphin in INTERLISP Nov 1981 (tr) 11.195
On 11/780 in Franz fixnum arith (sfc) 8.1
On 11/780 in Franz generic arith (nfc) 7.7
On 11/780 in Franz with generic arith (nfc)(TAKF) 7.5
On 11/750 in PSL, generic arith 7.1
On 11/750 in Franz with generic arith (nfc)(TAKF) 6.7
On MC (KL) in MacLisp (TAKF) 5.9
On Dolphin May 1982 generic arith 5.74
On Dolphin in INTERLISP Jan 1982 (tr) 5.71
On Dolphin May 1982 Inum arith (tr) 5.28
On Dolphin May 1982 generic arith (tr) 5.23
On 2060 in T/UCILISP (sfc) 4.801
On 2060 in INTERLISP (rc/nsw) 4.57

88

Tak Times
On Symbolics LM-2 4.446
On 11/780 in Franz with fixnum arith (nfc)(TAKF) 4.3
On 11/780 in INTERLISP (load = 0) 4.24
On Dolphin May 1982 gen arth (d/o) 4.21
On 780 in NIL Aug 1983 4.16
On Foonly F2 in MacLisp 4.1
On Dolphin May 1982 Inum arth (d/o,tr) 3.88
On Dolphin May 1982 gen arth (d/o,tr) 3.84
On Apollo (MC68000) PASCAL 3.8
On 11/750 in Franz, Fixnum arith 3.6
On MIT CADR in ZetaLisp 3.16
On 2060 in R/UCILISP (sfc) 3.157
On MIT CADR in ZetaLisp 3.1
On MIT CADR in ZetaLisp (TAKF) 3.1
On Symbolics LM-2 2.905
On Apollo (MC68000) PSL SYSLISP 2.93
On 11/780 in NIL (TAKF) 2.8
On 11/780 in NIL 2.7
On SUN I in TAIL (tr) 2.6
On 11/750 in C 2.4
On 11/780 in Franz with fixnum arith (nfc) 2.13
On 11/780 (Diablo) in Franz with fixnum arith (nfc) 2.1
On 11/780 in Franz with fixnum arith (nfc) 2.1
On 11/780 in Franz fixnum arith (nfc) 2.1
On 2060 in INTERLISP (bc) 2.153
On 2060 in INTERLISP (bc) 2.04

§ 3.1 Tak 89

Tak Times
On 11/780 DEC Common Lisp 1.96
On 68000 in C 1.9
On 11/750 in Franz fixnum arith (lfc) 1.9
On Apollo PSL (10Mz/1Mb/Cache) 1.679
On Utah-20 in PSL Generic arith 1.672
On DandeLion Normal 1.67
On 11/750 in PSL INUM arith 1.4
On LMI Lambda 1.4
On 11/780 (Diablo) in C 1.35
On 11/780 in Franz with fixnum arith (lfc) 1.13
On UTAH-20 in Lisp 1.6 1.1
On 11/780 in Franz fixnum arith (lfc) 1.1
On UTAH-20 in PSL Inum arith 1.077
On 2060 in Elisp (nfc) 1.063
On 2060 in R/UCILISP (nfc) .969
On 2060 in T/UCILISP (nfc) .930
On SAIL (KL) in MacLisp .832
On SAIL in bummed MacLisp .795
On MC (KL) in MacLisp (TAKF,dcl) .789
On 68000 in machine language .7
On MC (KL) in MacLisp (dcl) .677
On Symbolics 3600 (no-peep,no-ifu) .633
On SAIL in bummed MacLisp (dcl) .616
On Symbolics 3600 (peep,no-ifu) .590
On SAIL (KL) in MacLisp (dcl) .564
On Dorado in INTERLISP Feb 1983 (tr) .526
On UTAH-20 in SYSLISP arith .526

90

Tak Times
On SAIL (KLB) in MacLisp (dcl) .489
On LMI Lambda (Microcompiled) .45
On Symbolics 3600 (peep,ifu) .430
On S-1 Mark IIA (Common Lisp) 12/02/83 .410
On S-1 Mark IIA (Common Lisp) 3/23/84 .320
On S-1 Mark IIA (Common Lisp) 3/23/84 .295
On SAIL in machine language (wholine) .255
On SAIL in machine language (ebox) .184
On SCORE (2060) in machine language (ebox) .162
On S-1 Mark I in machine language .114
On Cray-1, PSL .044

(tr) means that tail recursion removal was done by the compiler. (d/o) means
that the display was turned off during the timing run; this applies to the Xerox
D-machines (Dolphin, DandeLion, and Dorado) only. (sfc) means ‘slow function
call.’ In Franz, this is a debugging setting. (nfc) means ‘normal function call.’ In
Franz, this is the normal setting. (lfc) means ‘local function call.’ In Franz, this
is a fast function call.

In the table above, (nfc) corresponds to ‘TrlOn’ and (SFC) to ‘TrlOff’ above;
(LCF) corresponds to ‘LclfYes.’

(bc) means that the function was block compiled in INTERLISP. (rc) means
that the function was not block compiled in INTERLISP, but compiled normally.
(swl) means that the swapping space in INTERLISP-10 was set low. (nsw) means
that there was no swapping space used in INTERLISP-10. (dcl) means that there
was heavy use of declarations in MacLisp. This typically means that the types of
all variables and return values for functions were declared.

U/UCILISP is the University of Texas (Austin) version of UCILisp. At the
time of the benchmarking it was maintained by Mabry Tyson. R/UCILISP is the
Rutgers University version of UCILisp. It is maintained by Charles Hedrick.

It is interesting to note that some implementations have more than one entry
at different benchmark dates. This shows how the performance can be tuned by
the implementors. S-1 Lisp is a good example. The increase in performance on
TAK of S-1 Lisp is due to three things: 1) improving function call by removing

§ 3.1 Tak 91

pipeline turbulence from the calling sequence; 2) using simpler addressing modes
at function entry; 3) introducing a new function call mechanism for functions that
call themselves (this is different from tail recursion removal).

(KLB) refers to the Model B KL-10 CPU, which is the designation for the
CPU in a DEC 2060. SAIL is a KL-10 running the WAITS operating system.
During the time of the benchmarking, SAIL was upgraded from a KL-10A CPU
to a KL-10 CPU. There was nearly a 20% improvement in most things with the
KL-10B CPU.

TAKF is an alternative TAK formulation proposed by George Carrette, who
was working on the Vax NIL project at MIT when the benchmark study was
started.

;;; Here are the definitions of TAKF as provided by GJC.
;;; #-NIL means except in NIL, #+NIL means for NIL.
(defun takf (x y z)
(takfsub #’takfsub x y z))

#-NIL
(defun takfsub (f x y z)
(if (not (< y x))

z
(funcall f f (funcall f f (1- x) y z)

(funcall f f (1- y) z x)
(funcall f f (1- z) x y))))

#+NIL
(defun takfsub ((&function f) x y z)
;; lexical scoping of function bindings allows this.
(if (not (< y x))

z
(f #’f (f #’f (1- x) y z)

(f #’f (1- y) z x)
(f #’f (1- z) x y))))

This style of function call is measured in the data driven symbolic derivative
benchmark (DDERIV).

92

In TAKF, changing the variable F to FF

speeded up the function by a factor of 5.

That is because F is a built-in variable and FF is not.

— Charles Hedrick, discussing a now non-existent

problem, in TIMING.MSG[TIM,LSP] (May 2, 1982)

It doesn’t sound plausible at first glance,

though of course anything is possible.

— Charles Hedrick, responding to a request for permission to quote

him as above. (April 24, 1985)

People in general seem to think that this is a worthless benchmark

because it is so small and tests such a small and specific set of features,

although I think that it is still worth something

despite that fact.

— Daniel Weinreb, discussing TAK (November 14, 1981)

93

3.2 Stak

STAK is a variant of TAK; it uses special binding to pass arguments rather
than the normal argument-passing mechanism. Here is the code:

3.2.1 The Program

(defvar x)
(defvar y)
(defvar z)

(defun stak (x y z)
(stak-aux))

(defun stak-aux ()
(if (not (< y x))

z
(let ((x (let ((x (1- x))

(y y)
(z z))

(stak-aux)))
(y (let ((x (1- y))

(y z)
(z x))

(stak-aux)))
(z (let ((x (1- z))

(y x)
(z y))

(stak-aux))))
(stak-aux))))

3.2.2 Analysis

If everything else is equal, this benchmark will show slower times for deep-
bound Lisps than for shallow-bound Lisps; the less efficient the implementation
of deep binding, the slower the time will be. The S-1 Lisp caches lookups of such
variables, but not at the optimal points in a function (special variables are cached
at the contours that contain references to them). As a result, S-1 Lisp performs
badly on this benchmark. Moreover, the special lookup code is implemented
as a ‘fast’ internal function call that translates into a jump instruction; jump
instructions often cause a wrong branch prediction to occur in pipelined machines.

Deep binding is a useful technique in multiprocessing settings or in settings
in which the stacks being used are often switched.

94

In Vax NIL, there appears to be excessive saving and restoring of registers,
which is the cause of the slowness of NIL as compared with the Vax 750 Common
Lisp.

STAK does 47,709 special binds, 63,609 <’s, 63,609 function calls to STAK,
and 47,709 1−’s.

Meter for Stak
Item Count

Calls to STAK 63609
<’s 63609

Binds 47709
1−’s 47706
Total 222633

3.2.3 Translation Notes

STAK-AUX is declared to return a fixnum, and X, Y, and Z are declared to
be bound only to fixnums.

The function 1− takes a fixnum and subtracts 1 from it. When translating
to INTERLISP, ILESSP is used for < and SUB1 is used for 1−.

In INTERLISP, X, Y, and Z are declared SPECVARS. TAK and STAK form
a block with TAK as the entry point. The functions are block compiled. The
INTERLISP code is

(RPAQQ STAKCOMS ((FNS TAK STAK)
(BLOCKS
(STAKBLOCK TAK STAK

(ENTRIES TAK)))
(SPECVARS X Y Z)))

§ 3.2 Stak 95

(DEFINEQ
(TAK
(LAMBDA (X Y Z)
(DECLARE (SPECVARS X Y Z))
(STAK)))

(STAK
(LAMBDA NIL

(DECLARE (SPECVARS . T))
(COND
((NOT (ILESSP Y X))

Z)
(T (PROG ((X (PROG ((X (SUB1 X))

(Y Y)
(Z Z))
(RETURN (STAK))))

(Y (PROG ((X (SUB1 Y))
(Y Z)
(Z X))
(RETURN (STAK))))

(Z (PROG ((X (SUB1 Z))
(Y X)
(Z Y))
(RETURN (STAK)))))

(RETURN (STAK))))))))

(DECLARE: DOEVAL@COMPILE DONTCOPY
(SPECVARS X Y Z))

96

3.2.4 Raw Data

Raw Time
Stak

Implementation CPU GC Real Paging
SAIL 3.50 0.00 4.42

Lambda 6.50 0.00
Lambda (MC) 5.35 0.00

3600 2.58 0.00
3600 + IFU 2.30 0.00
Dandelion 4.66 0.00
Dolphin 12.40 0.00
Dorado 1.89 0.00

S-1 4.31
PSL-SUN 16.06 0.00
PSL-20 2.69 0.00

PSL-3081 1.69 0.00
PSL-Cray 1.13 0.00
PSL-750 17.78 0.00

PSL-750 (VMS) 19.73 0.00
PSL-780 7.10 0.00

PSL-DN300 19.44 0.00
PSL-DN600 18.68 0.00
PSL-DN160 11.30 0.00
PSL-HP200 11.71 0.00
PSL-HP-UX 12.51 0.00

InterLispVax 780 9.72
MV4000 CL 9.35
MV8000 CL 6.76
MV10000 CL 3.09
3600 + FPA 2.30 0.00

750 NIL 23.14 23.24
8600 CL 1.41 0.00

§ 3.2 Stak 97

Raw Time
Stak

Implementation CPU GC Real Paging
780 CL 4.11 0.00
785 CL 2.40 0.00
750 CL 6.21 0.00
730 CL 20.96 0.00
Perq 12.30

750 Franz
TrlOn & LclfYes 5.05 0.00
TrlOn & LclfNo 11.18 0.00
TrlOff & LclfYes 5.01 0.00
TrlOff & LclfNo 25.98 0.00

780 Franz
TrlOn & LclfYes 3.17 0.00
TrlOn & LclfNo 6.32 0.00
TrlOff & LclfYes 3.15 0.00
TrlOff & LclfNo 17.75 0.00

Franz 68000
TrlOn & LclfYes 8.25 0.00
TrlOn & LclfNo 10.00 0.00
TrlOff & LclfYes 8.27 0.00
TrlOff & LclfNo 25.12 0.00

InterLisp-10 6.37 0.00
LM-2 7.83

98

As Peter Deutsch has pointed out, this is a crummy benchmark,

which was implemented by relatively unenlightened programming on the CADR.

I made it almost 50% faster in 5 minutes

— Bruce Edwards, discussing an unknown benchmark (February 27, 1981)

Seems to me benchmarking generates more debate than information.

— Vaughan Pratt, TIMING.MSG[TIM,LSP] (October 19, 1981)

99

3.3 Ctak

CTAK is a variant of TAK that uses CATCH and THROW to return values
rather than the function-return mechanism. Not all Lisps have CATCH/THROW
functionality; INTERLISP can mimic the behavior of CATCH/THROW with its
much more powerful spaghetti stack. The times for INTERLISP on this benchmark
are quite slow, but the implementation doubles the number of function calls, as
we shall see.

3.3.1 The Program

(defun ctak (x y z)
(catch ’ctak (ctak-aux x y z)))

(defun ctak-aux (x y z)
(cond ((not (< y x))

(throw ’ctak z))
(t (ctak-aux

(catch ’ctak
(ctak-aux (1- x)

y
z))

(catch ’ctak
(ctak-aux (1- y)

z
x))

(catch ’ctak
(ctak-aux (1- z)

x
y))))))

3.3.2 Analysis

This benchmark is similar to TAK, but has both CATCH and THROW. The
use of CATCH and THROW here is somewhat trivial because the THROW always
throws to the nearest enclosing CATCH frame. Typically, CATCH and THROW
are implemented in the following manner: whenever a CATCH is evaluated, a
catch frame is placed on the stack. In the catch frame is a pointer to the next
enclosing catch frame, so that we end up with a linked list of catch frames. When
a THROW is evaluated, it determines which tag it will search for, and it will
search up this threaded list of catch frames, checking whether the tags are EQ. In
CTAK, this search only goes as far as the first catch frame. The length of time

100

that THROW uses is linear in the number of enclosing catch frames before the
one that is required.

Meter for Ctak
Item Count
<’s 63609

Calls to CTAK-AUX 63609
Throw’s 47707
Catch’s 47707
1−’s 47706
Total 270338

3.3.3 Translation Notes

INTERLISP does not support CATCH and THROW directly, but it does sup-
port the more powerful spaghetti stack mechanism. To use that mechanism in
CTAK we need to introduce an auxiliary function, TAKCALLER. TAKCALLER
provides the name from which the RETFROM returns. Thus, the function TAK-
CALLER serves the role of the CATCH frame and tag in the Common Lisp
CATCH, and RETFROM serves the role of THROW. When evaluating the per-
formance of CTAK on INTERLISP implementations, keep in mind that there are
twice as many function calls taking place as in most Common Lisp dialects. Here

§ 3.3 Ctak 101

is the INTERLISP code:

(RPAQQ CTAKCOMS ((FNS TAK TAK1 TAKCALLER)))
(DEFINEQ
(TAK
(LAMBDA (X Y Z)
(TAKCALLER X Y Z)))

(TAK1
(LAMBDA (X Y Z)
(COND
((NOT (ILESSP Y X))

(RETFROM (QUOTE TAKCALLER)
Z))

(T (TAK1 (TAKCALLER (SUB1 X)
Y Z)

(TAKCALLER (SUB1 Y)
Z X)

(TAKCALLER (SUB1 Z)
X Y))))))

(TAKCALLER
(LAMBDA (X Y Z)
(TAK1 X Y Z)))

)

102

3.3.4 Raw Data

Raw Time
Ctak

Implementation CPU GC Real Paging
SAIL 2.85 0.00 4.18

Lambda 4.39 0.00
Lambda (MC)

3600 7.65 0.00
3600 + IFU 5.04 0.00
Dandelion 63.20 0.00
Dolphin 140.00 0.00
Dorado 18.00 0.00

S-1 0.82
PSL-SUN 10.11 0.00
PSL-20 2.97 0.00

PSL-3081 0.82 0.00
PSL-Cray 0.59 0.00
PSL-750 13.58 0.00

PSL-750 (VMS) 12.08 0.00
PSL-780 5.38 0.00

PSL-DN300 12.43 0.00
PSL-DN600 12.25 0.00
PSL-DN160 6.63 0.00
PSL-HP200 9.33 0.00
PSL-HP-UX 9.49 0.00

InterLispVax 780 31.63
MV4000 CL 5.08
MV8000 CL 3.37
MV10000 CL 1.79
3600 + FPA 5.04 0.00

750 NIL 9.91 9.91
8600 CL 2.32 0.00

§ 3.3 Ctak 103

Raw Time
Ctak

Implementation CPU GC Real Paging
780 CL 8.09 0.00
785 CL 5.65 0.00
750 CL 13.86 0.00
730 CL 34.86 0.00
Perq 7.63

750 Franz
TrlOn & LclfYes 18.75 0.00
TrlOn & LclfNo 18.33 0.00
TrlOff & LclfYes 18.25 0.00
TrlOff & LclfNo 27.05 0.00

780 Franz
TrlOn & LclfYes 10.68 0.00
TrlOn & LclfNo 12.05 0.00
TrlOff & LclfYes 10.70 0.00
TrlOff & LclfNo 17.80 0.00

Franz 68000
TrlOn & LclfYes 16.60 0.00
TrlOn & LclfNo 17.80 0.00
TrlOff & LclfYes 16.60 0.00
TrlOff & LclfNo 24.17 0.00

InterLisp-10 44.67 0.00
LM-2 10.43

104

It measures EBOX milliseconds.

You might possibly be getting charged for

somebody else’s spacewar or interrupt level.

I don’t really remember.

You get charged for some amount of context switching and scheduling

(possibly even figuring out that it should just run you again next).

— Jeff Rubin, answering how the KL10 reports runtime (October 19, 1981)

105

3.4 Takl

TAKL is very much like TAK, but it does not perform any explicit arithmetic.

3.4.1 The Program

(defun listn (n)
(if (not (= 0 n))

(cons n (listn (1- n)))))

(defvar 18l (listn 18.)) ;note that these are potential numbers
(defvar 12l (listn 12.))
(defvar 6l (listn 6.))

(defun mas (x y z)
(if (not (shorterp y x))

z
(mas (mas (cdr x)

y z)
(mas (cdr y)

z x)
(mas (cdr z)

x y))))

(defun shorterp (x y)
(and y (or (null x)

(shorterp (cdr x)
(cdr y)))))

3.4.2 Analysis

TAK mostly measures function call, but it also measures some amount of
numeric operations, namely subtraction by 1 and the less-than relation. 47,706
such subtractions by 1 are done as well as 63,609 less-than relation tests. To
separate out this computation, and to make this benchmark more of a purely
symbol-manipulating program, Larry Masinter suggested that we use a unary
representation of numbers instead of the usual machine representations. In TAKL,
N is represented by the list (n, n− 1, n− 2, . . . , 1).

The function < is implemented by SHORTERP, which tests whether one
list is shorter than the other. We use the global variables 18L, 12L, and 6L to
represent the constants 18, 12, and 6.

Notice that SHORTERP is defined recursively; implementations that do tail
recursion will do much better on this benchmark than implementations that don’t.

106

Because of the average size of the lists being compared with SHORTERP, approx-
imately ten times as many calls are made to SHORTERP than to MAS itself.

When a capitalized word appears under ITEM in this table and in all sub-
sequent ones, that is the entry for the number of calls made to the function with
that name. So, LISTN refers to the number of times that LISTN was called.

Meter for Listn
Item Count
LISTN 39

=’s 39
Cons’s 36

1-’s 36
Total 150

Meter for Mas
Item Count
MAS 63609
Cdr’s 47706
Total 111315

Meter for Shorterp
Cdr’s 818900
Null’s 425352

SHORTERP 473059
Total 1717311

3.4.3 Translation Notes

S-1 Lisp function calls are quite expensive, and the S-1 suffers from pipeline
turbulence. Pipeline turbulence occurs when one instruction in an instruction
stream depends on a value produced by an earlier instruction. If the earlier
instruction has not placed this value in a place that the second instruction can get
when the second instruction needs that value, the pipeline blocks and performance
degrades.

Also, S-1 Lisp does not do any tail recursion removal, although it does do
the analysis that would allow it to do that removal. Therefore, SHORTERP is
somewhat slow on the S-1. If SHORTERP is defined as

(defun shorterp (x y)
(do ((x x (cdr x))

(y y (cdr y)))
((null x) (not (null y)))
(cond ((null y) (return ’())))))

then the time for the S-2 is 1.18 seconds instead of 2.92. This demonstrates that
a knowledge of the implementation can go a long way when tuning a program for
performance. INTERLISP does do tail recursion removal, as does PSL.

§ 3.4 Takl 107

3.4.4 Raw Data

Raw Time
Takl

Implementation CPU GC Real Paging
SAIL 2.81 0.00 4.02

Lambda 10.70 0.00
Lambda (MC) 5.31 0.00

3600 6.44 0.00
3600 + IFU 4.95 0.00
Dandelion 14.00 0.00
Dolphin 45.60 0.00
Dorado 3.62 0.00

S-1 2.92
PSL-SUN 9.91 0.00
PSL-20 2.52 0.00

PSL-3081 0.61 0.00
PSL-Cray 0.30 0.00
PSL-750 15.45 0.00

PSL-750 (VMS) 12.36 0.00
PSL-780 5.27 0.00

PSL-DN300 12.90 0.00
PSL-DN600 10.92 0.00
PSL-DN160 3.98 0.00
PSL-HP200 5.73 0.00
PSL-HP-UX 6.39 0.00

InterLispVax 780 9.87
MV4000 CL 17.93
MV8000 CL 10.80
MV10000 CL 5.52
3600 + FPA 4.95 0.00

750 NIL 39.13 39.27
8600 CL 2.03 0.00

108

Raw Time
Takl

Implementation CPU GC Real Paging
780 CL 7.34 0.00
785 CL 5.26 0.00
750 CL 12.35 0.00
730 CL 34.15 0.00
Perq 21.73

750 Franz
TrlOn & LclfYes 12.60 0.00
TrlOn & LclfNo 18.40 0.00
TrlOff & LclfYes 12.37 0.00
TrlOff & LclfNo 47.02 0.00

780 Franz
TrlOn & LclfYes 6.17 0.00
TrlOn & LclfNo 9.72 0.00
TrlOff & LclfYes 6.18 0.00
TrlOff & LclfNo 24.67 0.00

Franz 68000
TrlOn & LclfYes 12.82 66.64
TrlOn & LclfNo 16.00 67.14
TrlOff & LclfYes 12.82 46.05
TrlOff & LclfNo 43.12 46.38

InterLisp-10 3.78 0.00
LM-2 25.90

§ 3.4 Takl 109

It is a known bug that arrays larger than the size of main memory

don’t work very well,

in particular they have to be paged in at least twice to create them.

— David Moon, discussing LM-2 Performance (December 11, 1981)

110

3.5 Takr

3.5.1 The Program

(defun tak0 (x y z)
(cond ((not (< y x)) z)

(t (tak1 (tak37 (1- x) y z)
(tak11 (1- y) z x)
(tak17 (1- z) x y)))))

(defun tak18 (x y z)
(cond ((not (< y x)) z)

(t (tak19 (tak3 (1- x) y z)
(tak9 (1- y) z x)
(tak23 (1- z) x y)))))

3.5.2 Analysis

TAKR is a function that was defined to thwart the effectiveness of cache
memories. TAKR comprises 100 copies of TAK, each with a different name.
Where TAK recursively calls itself, TAKR will call a predetermined, but random,
copy of itself. In the program above, TAK18 calls TAK19, TAK3, TAK9, and
TAK23.

Unfortunately, the cache on many machines is large enough to keep most of
the 100 functions in the cache. For small machines with a cache, there will be a
difference in runtime between TAK and TAKR.

SAIL used to be a KL-10A CPU with a 2K-word 200-nanosecond cache mem-
ory and a main memory consisting of a 2-megaword 1.5-µsec memory and a 256K-
word .9-µsec memory. Currently SAIL is a KL-10B CPU, which is identical to a
DEC 2060 CPU—it is 20% faster than the KL-10A CPU. On SAIL, the cache
memory allows a very large, but slow, physical memory to behave reasonably
well.

This benchmark was run with no load and the result was

CPU time = 0.595
elapsed time = 0.75
wholine time = 0.75
gc time = 0.0
load average before = 0.020
load average after = 0.026

§ 3.5 Takr 111

where CPU time is the EBOX time (no memory reference time included), elapsed
time is real time, wholine time is EBOX + MBOX (memory reference) times, GC
time is garbage collector time, and the load averages are given before and after
the timing run. All times are in seconds, and the load average is the exponentially
weighted, over time, average of the number of jobs in all runnable queues. With
no load, wholine and elapsed times are the same.

On TAKR with no load the result on SAIL (KL-10A) was

CPU time = 0.602
elapsed time = 1.02
wholine time = 1.02
gc time = 0.0
load average before = 0.27
load average after = 0.28

which shows a 36% degradation. The question is how well these 100 functions
destroy the effect of the cache on SAIL. The answer is that it does not destroy the
effect very much. This makes sense because the total number of instructions for
100 copies of the function is about 3800, and the cache holds about 2000 words.
Here is the result for the single function TAK′ run on SAIL with the cache shut off:

CPU time = 0.6
elapsed time = 6.95
wholine time = 6.9
gc time = 0.0
load average before = 0.036
load average after = 0.084

which shows a factor of 9.2 degradation. The 100-function version ran in the same
time within a few percent.

Hence, in order to destroy the effect of a cache, one must increase the size of
the code significantly beyond the size of the cache. Also, the distribution of the
locus of control must be roughly uniform or random.

More important to most implementations, though, is that the tail recursion is
no longer guaranteed to be a call from a function to itself, and many implementa-
tions do not do tail recursion removal when the call is not to that same function.
That is, often a compiler will implement tail recursion removal by transforming a
function that calls itself to one that does a GO to the head of the function. Of
course, the function has to be converted to a PROG equivalent of itself as well.

112

Meter for Tak0
TAK0 817
1−’s 522
Total 1339

Meter for Tak18
TAK18 683
1−’s 453
Total 1136

Each function is called an average of 636.09 times with a standard deviation
of 8.2.

§ 3.5 Takr 113

3.5.3 Raw Data

Raw Time
Takr

Implementation CPU GC Real Paging
SAIL 0.48 0.00 1.18

Lambda 1.80 0.19
Lambda (MC)

3600 0.60 0.00
3600 + IFU 0.43 0.00
Dandelion 1.75 0.00
Dolphin 3.42 0.00
Dorado 0.67 0.00

S-1 0.58
PSL-SUN 1.42 0.00
PSL-20 0.59 0.00

PSL-3081 0.12 0.00
PSL-Cray 0.06 0.00
PSL-750 2.82 0.00

PSL-750 (VMS) 2.13 0.00
PSL-780 1.17 0.00

PSL-DN300 1.75 0.00
PSL-DN600 2.13 0.00
PSL-DN160 3.20 0.00
PSL-HP200 1.76 0.00
PSL-HP-UX 1.55 0.00

InterLispVax 780 4.95
MV4000 CL 2.60
MV8000 CL 2.40
MV10000 CL 1.20
3600 + FPA 0.43 0.00

750 NIL 5.71 5.71
8600 CL 0.81 0.00

114

Raw Time
Takr

Implementation CPU GC Real Paging
780 CL 3.42 0.00
785 CL 1.75 0.00
750 CL 4.39 0.00
730 CL 15.63 0.00
Perq 8.40

750 Franz
TrlOn & LclfYes 2.70 0.00
TrlOn & LclfNo 5.08 0.00
TrlOff & LclfYes 2.70 0.00
TrlOff & LclfNo 19.17 0.00

780 Franz
TrlOn & LclfYes 1.70 0.00
TrlOn & LclfNo 3.62 0.00
TrlOff & LclfYes 1.70 0.00
TrlOff & LclfNo 13.26 0.00

Franz 68000
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

InterLisp-10 2.16 0.00
LM-2 2.87

§ 3.5 Takr 115

Of course, all could, in principle, be tuned

— Richard Fateman, discussing Franz performance (February 19, 1982)

116

3.6 Boyer

Here is what Bob Boyer said about the Boyer Benchmark:

J Moore and I wrote the REWRITE program as quick means of guess-
ing how fast our theorem-proving program would run if we translated
it into some other Lisp system. Roughly speaking, it is a rewrite-rule-
based simplifier combined with a very dumb tautology-checker, which has
a three-place IF as the basic logical connective.

3.6.1 The Program

(defvar unify-subst)
(defvar temp-temp)
(defun add-lemma (term)
(cond ((and (not (atom term))

(eq (car term)
(quote equal))

(not (atom (cadr term))))
(setf (get (car (cadr term)) (quote lemmas))

(cons term (get (car (cadr term))
(quote lemmas)))))

(t (error "~%ADD-LEMMA did not like term: ~a" term))))
(defun add-lemma-lst (lst)
(cond ((null lst)

t)
(t (add-lemma (car lst))

(add-lemma-lst (cdr lst)))))
(defun apply-subst (alist term)
(cond ((atom term)

(cond ((setq temp-temp (assq term alist))
(cdr temp-temp))

(t term)))
(t (cons (car term)

(apply-subst-lst alist (cdr term))))))
(defun apply-subst-lst (alist lst)
(cond ((null lst)

nil)
(t (cons (apply-subst alist (car lst))

(apply-subst-lst alist (cdr lst))))))

§ 3.6 Boyer 117

(defun falsep (x lst)
(or (equal x (quote (f)))

(member x lst)))
(defun one-way-unify (term1 term2)
(progn (setq unify-subst nil)

(one-way-unify1 term1 term2)))
(defun one-way-unify1 (term1 term2)
(cond ((atom term2)

(cond ((setq temp-temp (assq term2 unify-subst))
(equal term1 (cdr temp-temp)))

(t (setq unify-subst (cons (cons term2 term1)
unify-subst))

t)))
((atom term1)
nil)
((eq (car term1)

(car term2))
(one-way-unify1-lst (cdr term1)

(cdr term2)))
(t nil)))

(defun one-way-unify1-lst (lst1 lst2)
(cond ((null lst1)

t)
((one-way-unify1 (car lst1)

(car lst2))
(one-way-unify1-lst (cdr lst1)

(cdr lst2)))
(t nil)))

(defun rewrite (term)
(cond ((atom term)

term)
(t (rewrite-with-lemmas

(cons (car term)
(rewrite-args (cdr term)))

(get (car term)
(quote lemmas))))))

(defun rewrite-args (lst)
(cond ((null lst)

nil)
(t (cons (rewrite (car lst))

(rewrite-args (cdr lst))))))

118

(defun rewrite-with-lemmas (term lst)
(cond ((null lst)

term)
((one-way-unify term (cadr (car lst)))
(rewrite
(apply-subst unify-subst (caddr (car lst)))))

(t (rewrite-with-lemmas term (cdr lst)))))
(defun setup ()
(add-lemma-lst
(quote ((equal (compile form)

(reverse (codegen (optimize form)
(nil))))

(equal (eqp x y)
(equal (fix x)

(fix y)))
(equal (greaterp x y)

(lessp y x))
(equal (lesseqp x y)

(not (lessp y x)))
(equal (greatereqp x y)

(not (lessp x y)))
(equal (boolean x)

(or (equal x (t))
(equal x (f))))

(equal (iff x y)
(and (implies x y)

(implies y x)))
(equal (even1 x)

(if (zerop x)
(t)
(odd (1- x))))

(equal (countps- l pred)
(countps-loop l pred (zero)))

(equal (fact- i)
(fact-loop i 1))

(equal (reverse- x)
(reverse-loop x (nil)))

(equal (divides x y)
(zerop (remainder y x)))

(equal (assume-true var alist)
(cons (cons var (t))

alist))

§ 3.6 Boyer 119

(equal (assume-false var alist)
(cons (cons var (f))

alist))
(equal (tautology-checker x)

(tautologyp (normalize x)
(nil)))

(equal (falsify x)
(falsify1 (normalize x)

(nil)))
(equal (prime x)

(and (not (zerop x))
(not (equal x (add1 (zero))))
(prime1 x (1- x))))

(equal (and p q)
(if p (if q (t)

(f))
(f)))

(equal (or p q)
(if p (t)

(if q (t)
(f))

(f)))
(equal (not p)

(if p (f)
(t)))

(equal (implies p q)
(if p (if q (t)

(f))
(t)))

(equal (fix x)
(if (numberp x)

x
(zero)))

(equal (if (if a b c)
d e)

(if a (if b d e)
(if c d e)))

(equal (zerop x)
(or (equal x (zero))

(not (numberp x))))
(equal (plus (plus x y)

z)
(plus x (plus y z)))

120

(equal (equal (plus a b)
(zero))

(and (zerop a)
(zerop b)))

(equal (difference x x)
(zero))

(equal (equal (plus a b)
(plus a c))

(equal (fix b)
(fix c)))

(equal (equal (zero)
(difference x y))

(not (lessp y x)))
(equal (equal x (difference x y))

(and (numberp x)
(or (equal x (zero))

(zerop y))))
(equal (meaning (plus-tree (append x y))

a)
(plus (meaning (plus-tree x)

a)
(meaning (plus-tree y)

a)))
(equal (meaning (plus-tree (plus-fringe x))

a)
(fix (meaning x a)))

(equal (append (append x y)
z)

(append x (append y z)))
(equal (reverse (append a b))

(append (reverse b)
(reverse a)))

(equal (times x (plus y z))
(plus (times x y)

(times x z)))
(equal (times (times x y)

z)
(times x (times y z)))

(equal (equal (times x y)
(zero))

(or (zerop x)
(zerop y)))

§ 3.6 Boyer 121

(equal (exec (append x y)
pds envrn)

(exec y (exec x pds envrn)
envrn))

(equal (mc-flatten x y)
(append (flatten x)

y))
(equal (member x (append a b))

(or (member x a)
(member x b)))

(equal (member x (reverse y))
(member x y))

(equal (length (reverse x))
(length x))

(equal (member a (intersect b c))
(and (member a b)

(member a c)))
(equal (nth (zero)

i)
(zero))

(equal (exp i (plus j k))
(times (exp i j)

(exp i k)))
(equal (exp i (times j k))

(exp (exp i j)
k))

(equal (reverse-loop x y)
(append (reverse x)

y))
(equal (reverse-loop x (nil))

(reverse x))
(equal (count-list z (sort-lp x y))

(plus (count-list z x)
(count-list z y)))

(equal (equal (append a b)
(append a c))

(equal b c))
(equal (plus (remainder x y)

(times y (quotient x y)))
(fix x))

(equal (power-eval (big-plus1 l i base)
base)

(plus (power-eval l base)
i))

122

(equal (power-eval (big-plus x y i base)
base)

(plus i (plus (power-eval x base)
(power-eval y base))))

(equal (remainder y 1)
(zero))

(equal (lessp (remainder x y)
y)

(not (zerop y)))
(equal (remainder x x)

(zero))
(equal (lessp (quotient i j)

i)
(and (not (zerop i))

(or (zerop j)
(not (equal j 1)))))

(equal (lessp (remainder x y)
x)

(and (not (zerop y))
(not (zerop x))
(not (lessp x y))))

(equal (power-eval (power-rep i base)
base)

(fix i))
(equal (power-eval (big-plus (power-rep i base)

(power-rep j base)
(zero)
base)

base)
(plus i j))

(equal (gcd x y)
(gcd y x))

(equal (nth (append a b)
i)

(append (nth a i)
(nth b (difference i (length a)))))

(equal (difference (plus x y)
x)

(fix y))
(equal (difference (plus y x)

x)
(fix y))

(equal (difference (plus x y)
(plus x z))

(difference y z))

§ 3.6 Boyer 123

(equal (times x (difference c w))
(difference (times c x)

(times w x)))
(equal (remainder (times x z)

z)
(zero))

(equal (difference (plus b (plus a c))
a)

(plus b c))
(equal (difference (add1 (plus y z))

z)
(add1 y))

(equal (lessp (plus x y)
(plus x z))

(lessp y z))
(equal (lessp (times x z)

(times y z))
(and (not (zerop z))

(lessp x y)))
(equal (lessp y (plus x y))

(not (zerop x)))
(equal (gcd (times x z)

(times y z))
(times z (gcd x y)))

(equal (value (normalize x)
a)

(value x a))
(equal (equal (flatten x)

(cons y (nil)))
(and (nlistp x)

(equal x y)))
(equal (listp (gopher x))

(listp x))
(equal (samefringe x y)

(equal (flatten x)
(flatten y)))

(equal (equal (greatest-factor x y)
(zero))

(and (or (zerop y)
(equal y 1))

(equal x (zero))))
(equal (equal (greatest-factor x y)

1)
(equal x 1))

124

(equal (numberp (greatest-factor x y))
(not (and (or (zerop y)

(equal y 1))
(not (numberp x)))))

(equal (times-list (append x y))
(times (times-list x)

(times-list y)))
(equal (prime-list (append x y))

(and (prime-list x)
(prime-list y)))

(equal (equal z (times w z))
(and (numberp z)

(or (equal z (zero))
(equal w 1))))

(equal (greatereqpr x y)
(not (lessp x y)))

(equal (equal x (times x y))
(or (equal x (zero))

(and (numberp x)
(equal y 1))))

(equal (remainder (times y x)
y)

(zero))
(equal (equal (times a b)

1)
(and (not (equal a (zero)))

(not (equal b (zero)))
(numberp a)
(numberp b)
(equal (1- a)

(zero))
(equal (1- b)

(zero))))
(equal (lessp (length (delete x l))

(length l))
(member x l))

(equal (sort2 (delete x l))
(delete x (sort2 l)))

(equal (dsort x)
(sort2 x))

§ 3.6 Boyer 125

(equal (length
(cons
x1
(cons
x2
(cons
x3
(cons
x4
(cons
x5
(cons x6 x7)))))))

(plus 6 (length x7)))
(equal (difference (add1 (add1 x))

2)
(fix x))

(equal (quotient (plus x (plus x y))
2)

(plus x (quotient y 2)))
(equal (sigma (zero)

i)
(quotient (times i (add1 i))

2))
(equal (plus x (add1 y))

(if (numberp y)
(add1 (plus x y))
(add1 x)))

(equal (equal (difference x y)
(difference z y))

(if (lessp x y)
(not (lessp y z))
(if (lessp z y)

(not (lessp y x))
(equal (fix x)

(fix z)))))
(equal (meaning (plus-tree (delete x y))

a)
(if (member x y)

(difference (meaning (plus-tree y)
a)

(meaning x a))
(meaning (plus-tree y)

a)))

126

(equal (times x (add1 y))
(if (numberp y)

(plus x (times x y))
(fix x)))

(equal (nth (nil)
i)

(if (zerop i)
(nil)
(zero)))

(equal (last (append a b))
(if (listp b)

(last b)
(if (listp a)

(cons (car (last a))
b)

b)))
(equal (equal (lessp x y)

z)
(if (lessp x y)

(equal t z)
(equal f z)))

(equal (assignment x (append a b))
(if (assignedp x a)

(assignment x a)
(assignment x b)))

(equal (car (gopher x))
(if (listp x)

(car (flatten x))
(zero)))

(equal (flatten (cdr (gopher x)))
(if (listp x)

(cdr (flatten x))
(cons (zero)

(nil))))
(equal (quotient (times y x)

y)
(if (zerop y)

(zero)
(fix x)))

(equal (get j (set i val mem))
(if (eqp j i)

val
(get j mem)))))))

§ 3.6 Boyer 127

(defun tautologyp (x true-lst false-lst)
(cond ((truep x true-lst)

t)
((falsep x false-lst)
nil)
((atom x)
nil)
((eq (car x)

(quote if))
(cond ((truep (cadr x)

true-lst)
(tautologyp (caddr x)

true-lst false-lst))
((falsep (cadr x)

false-lst)
(tautologyp (cadddr x)

true-lst false-lst))
(t (and (tautologyp (caddr x)

(cons (cadr x)
true-lst)

false-lst)
(tautologyp (cadddr x)

true-lst
(cons (cadr x)

false-lst))))))
(t nil)))

(defun tautp (x)
(tautologyp (rewrite x)

nil nil))

128

(defun test ()
(prog (ans term)

(setq term
(apply-subst
(quote ((x f (plus (plus a b)

(plus c (zero))))
(y f (times (times a b)

(plus c d)))
(z f (reverse (append (append a b)

(nil))))
(u equal (plus a b)

(difference x y))
(w lessp (remainder a b)

(member a (length b)))))
(quote (implies (and (implies x y)

(and (implies y z)
(and (implies z u)

(implies u w))))
(implies x w)))))

(setq ans (tautp term))))
(defun trans-of-implies (n)
(list (quote implies)

(trans-of-implies1 n)
(list (quote implies)

0 n)))
(defun trans-of-implies1 (n)
(cond ((eql n 1)

(list (quote implies)
0 1))

(t (list (quote and)
(list (quote implies)

(1- n)
n)

(trans-of-implies1 (1- n))))))
(defun truep (x lst)

(or (equal x (quote (t)))
(member x lst)))

(eval-when (compile load eval)
(setup))

;;; make sure you’ve run (setup) then call: (test)

§ 3.6 Boyer 129

3.6.2 Analysis

This benchmark, which has been distributed by Robert Boyer for several
years, has formed the basis of many comparisons between Lisp implementations.
It is essentially a theorem-proving benchmark.

SETUP is called to initialize the system; the initialization simply places a
number of axioms in a data base of such axioms. The quoted list in the function
SETUP is a representation for this list of axioms. Take, for example, the second
element of that list:

(equal (greaterp x y)
(lessp y x))

This axiom is placed on the property list of the symbol greaterp. It states that
the truth value of the statement

(greaterp x y)

is equivalent to that of

(lessp x y)

The basic operation of the benchmark is to prove that a particular logical state-
ment is a tautology. The statement is

(x ⊃ y ∧ (y ⊃ z ∧ (z ⊃ u ∧ u ⊃ w))) ⊃ (x ⊃ w)

where

x = f((a + b) + (c + 0))

y = f(reverse(append(append(a, b),nil)))

z = (a + b) = (x− y))

w = remainder(a, b) < member(a, length(b))

To prove this is a tautology, the program first rewrites the statement into
canonical form, which is as nested IF statements. To do this rewriting process,

130

the program uses the axioms stored in the data base as production rules. In the
sample axiom above, the action of the rewriter would be to substitute occurrences
of

(greaterp x y)

with

(lessp y x)

The greaterp form is matched (1-way unified) to bind the variables x and y. The
bindings are then substituted into a copy of the lessp form. This rewriting phase
is a simplication and canonicalization phase.

Once the sentence has been rewritten, the tautology-checker is invoked. This
checker is quite simple; it maintains a list of true statements and a list of false
statements. A sentence is a tautology if it is in the list of true sentences; it is not
a tautology if it is in the list of false sentences; it is false if it is not in either of
these lists and if it is not an IF statement.

An IF statement is of the form

(if a b c)

A sentence of this form is a tautology if one of the following three things is the
case: 1) if a is true and b is a tautology; 2) if a is false and c is a tautology; or 3) if
a is added to the list of true sentences and b can be shown to be a tautology, and
if a is added to the list of false sentences and c can be shown to be a tautology.

Besides a fair number of function calls, by far the largest number of operations
that this benchmark performs are list operations—mostly CARs, CDRs, NULL
and ATOM tests, and about a quarter of a million CONSs. The breakdown is
about three quarters of a million CARs and a half million each of CDRs, NULLs,
and ATOMs.

One would have to say that this benchmark is a good mixture of typical list-
structure-manipulating operations with a normal number of function calls. There
are also about 80,000 GETs, which is a typical mix if property lists are used.

§ 3.6 Boyer 131

Meter for Add-Lemma during SETUP
Car’s 424

Atom’s 212
Null’s 107

ADD-LEMMA-LST 107
Cdr’s 106
Get’s 106
Cons’s 106

Putprop’s 106
Eq’s 106

ADD-LEMMA 106
TRUEP 0
Sub1’s 0

TRANS-OF-IMPLIES1 0
TRANS-OF-IMPLIES 0

TAUTP 0
TAUTOLOGYP 0

REWRITE-WITH-LEMMAS 0
REWRITE-ARGS 0

REWRITE 0
ONE-WAY-UNIFY1-LST 0

ONE-WAY-UNIFY1 0
ONE-WAY-UNIFY 0

Member’s 0
Equal’s 0
FALSEP 0

APPLY-SUBST-LST 0
APPLY-SUBST 0

Total 1486

132

Meter for Add-Lemma during TEST
Car’s 788408
Cdr’s 462652
Null’s 434133
Atom’s 419284
Cons’s 226464

ONE-WAY-UNIFY1 171145
REWRITE-ARGS 169804

REWRITE-WITH-LEMMAS 152280
Eq’s 128879

ONE-WAY-UNIFY1-LST 100601
REWRITE 91024

Get’s 79742
ONE-WAY-UNIFY 73499

APPLY-SUBST-LST 11448
APPLY-SUBST 9512

Equal’s 1403
Member’s 272
TRUEP 207
FALSEP 150

TAUTOLOGYP 111
TAUTP 1
Sub1’s 0

TRANS-OF-IMPLIES1 0
TRANS-OF-IMPLIES 0
ADD-LEMMA-LST 0

Putprop’s 0
ADD-LEMMA 0

Total 3321019

§ 3.6 Boyer 133

3.6.3 Raw Data

Raw Time
Boyer

Implementation CPU GC Real Paging
SAIL 6.47 11.60 23.50

Lambda 31.70 7.20
Lambda (MC) 10.60 4.60

3600 11.99 2.93
3600 + IFU 9.40 1.77
Dandelion 74.60 44.40
Dolphin 101.10 31.30
Dorado 17.08 13.20

S-1 10.03
PSL-SUN 31.26 14.99
PSL-20 11.96 11.60

PSL-3081 2.34 2.26
PSL-Cray 1.85 1.50
PSL-750 43.38 40.71

PSL-750 (VMS) 45.65 17.33
PSL-780 21.30 19.97

PSL-DN300 46.92 48.58
PSL-DN600 43.70 41.18
PSL-DN160 25.66 15.34
PSL-HP200 25.52 0.00
PSL-HP-UX 25.19 7.34

InterLispVax 780 53.28
MV4000 CL 86.07
MV8000 CL 66.74
MV10000 CL 29.30
3600 + FPA 9.40 1.77

750 NIL 81.33 83.78
8600 CL 12.18 14.29

134

Raw Time
Boyer

Implementation CPU GC Real Paging
780 CL 46.79 40.90
785 CL 27.50 23.20
750 CL 69.38 79.30
730 CL 258.98 180.82
Perq 125.43

750 Franz
TrlOn & LclfYes 34.35 50.98
TrlOn & LclfNo 60.55 50.90
TrlOff & LclfYes 34.67 35.03
TrlOff & LclfNo 224.03 34.69

780 Franz
TrlOn & LclfYes 20.58 31.08
TrlOn & LclfNo 40.17 31.33
TrlOff & LclfYes 21.00 21.35
TrlOff & LclfNo 144.98 21.32

Franz 68000
TrlOn & LclfYes 37.94 66.64
TrlOn & LclfNo 55.85 67.14
TrlOff & LclfYes 38.46 46.05
TrlOff & LclfNo 216.22 46.38

InterLisp-10 25.45 27.47
LM-2 45.00

§ 3.6 Boyer 135

Perhaps the people who did the other timings

did not do a WITHOUT-INTERRUPTS?

— Howard Cannon, discussing timing variations (February 26, 1982)

SUBRCALL can be used in interpreted code, since

trampolines can be consed up on-the-fly to jump to the interpreter.

This technique is used in NIL,

which is one reason why the NIL timings for FUNCALL

are so good.

— George Carrette, discussing performance arcana (March 3, 1982)

136

3.7 Browse

3.7.1 The Program

;;; BROWSE -- Benchmark to create and browse through
;;; an AI-like data base of units.
;;; n is # of symbols
;;; m is maximum amount of stuff on the plist
;;; npats is the number of basic patterns on the unit
;;; ipats is the instantiated copies of the patterns
(defvar rand 21.)
(defmacro char1 (x) ‘(char (string ,x) 0))
(defun init (n m npats ipats)
(let ((ipats (copy-tree ipats)))
(do ((p ipats (cdr p)))

((null (cdr p)) (rplacd p ipats)))
(do ((n n (1- n))

(i m (cond ((= i 0) m)
(t (1- i))))

(name (gensym) (gensym))
(a ()))
((= n 0) a)

(push name a)
(do ((i i (1- i)))

((= i 0))
(setf (get name (gensym)) nil))

(setf (get name ’pattern)
(do ((i npats (1- i))

(ipats ipats (cdr ipats))
(a ()))
((= i 0) a)

(push (car ipats) a)))
(do ((j (- m i) (1- j)))

((= j 0))
(setf (get name (gensym)) nil)))))

(defun browse-random ()
(setq rand (mod (* rand 17.) 251.)))

§ 3.7 Browse 137

(defun randomize (l)
(do ((a ()))

((null l) a)
(let ((n (mod (browse-random) (length l))))
(cond ((= n 0)

(push (car l) a)
(setq l (cdr l)))

(t
(do ((n n (1- n))

(x l (cdr x)))
((= n 1)
(push (cadr x) a)
(rplacd x (cddr x)))))))))

(defun match (pat dat alist)
(cond ((null pat)

(null dat))
((null dat) ())
((or (eq (car pat) ’?)

(eq (car pat)
(car dat)))

(match (cdr pat) (cdr dat) alist))
((eq (car pat) ’*)
(or (match (cdr pat) dat alist)

(match (cdr pat) (cdr dat) alist)
(match pat (cdr dat) alist)))

(t (cond
((atom (car pat))
(cond
((eq (char1 (car pat)) #\?)
(let ((val (assoc (car pat) alist)))
(cond (val (match

(cons (cdr val)
(cdr pat))

dat
alist))

(t (match
(cdr pat)
(cdr dat)
(cons (cons (car pat)

(car dat))
alist))))))

138

((eq (char1 (car pat)) #*)
(let ((val (assoc (car pat) alist)))
(cond (val (match

(append (cdr val)
(cdr pat))

dat
alist))

(t
(do ((l () (nconc l (cons (car d) nil)))

(e (cons () dat) (cdr e))
(d dat (cdr d)))

((null e) ())
(cond ((match

(cdr pat)
d
(cons (cons (car pat) l)

alist))
(return t))))))))))

(t (and
(not (atom (car dat)))
(match (car pat)

(car dat) alist)
(match (cdr pat)

(cdr dat) alist)))))))
(defun browse ()
(investigate (randomize

(init
100.
10.
4.
’((a a a b b b b a a a a a b b a a a)
(a a b b b b a a
(a a)(b b))
(a a a b (b a) b a b a))))

’((*a ?b *b ?b a *a a *b *a)
(*a *b *b *a (*a) (*b))
(? ? * (b a) * ? ?))))

(defun investigate (units pats)
(do ((units units (cdr units)))

((null units))
(do ((pats pats (cdr pats)))

((null pats))
(do ((p (get (car units) ’pattern)

(cdr p)))
((null p))

(match (car pats) (car p) ())))))
;;; call: (browse)

§ 3.7 Browse 139

3.7.2 Analysis

This program is intended to perform many of the operations that a simple
expert system might perform. There is a simple pattern matcher that uses the
form of a symbol to determine its role within a pattern, and the data base of
‘units’ or ‘frames’ is implemented as property lists. In some ways this benchmark
duplicates some of the operations in Boyer, but it is designed to perform a mixture
of operations in proportions more nearly like those in real expert systems.

The basic operation of the benchmark is to search a data base of objects,
identifying all of those objects that satisfy some predicate. The objects contain
descriptors, which are patterns. The predicate is that a set of search patterns
matches the descriptors. The matching is done exhaustively—all search patterns
are matched against all descriptors regardless of the outcome of any of the indi-
vidual matches.

The property lists are placed on symbols created for this purpose. The content
of the unit—as they are called—is a list of data. The content is stored under the
indicator PATTERN (an unfortunate choice of terms). For example, one of the
data items stored in the list placed under the indicator PATTERN is

(a a b b b b a a
(a a)(b b))

The symbol will have other entries in order to complicate the property list opera-
tions. In this benchmark, each symbol has ten entries—one is the PATTERN entry
and the other nine are the ‘filler.’ The PATTERN entry is uniformly distributed
among the other nine entries. That is, it is as often the case that the PATTERN
entry is the first entry on the property list as it is the second, as it is the third, etc.
This means that the benchmark does not discriminate between implementations
that add new properties at the head and those that add new properties at the
end. For example, if a property list is of the form [i1 v1 i2 v2], when one adds
the value v under the indicator i in MacLisp, one gets [i v i1 v1 i2 v2], and in
INTERLISP one gets [i1 v1 i2 v2 i v].

The first thing the benchmark does is to initialize its data base. INIT takes
4 arguments: 1) the number of entries in the data base; 2) the total number of
objects, including the intended entry, on the property list of each symbol; 3) the
number of patterns on a unit; and 4) the data against which the patterns will be
matched—this is a list of instantiated patterns.

140

The symbol names are GENSYMed; the list of data that is stored on the
symbols is copied and turned into a circular list to aid with the task of placing
n of them on each symbol’s property list. The remainder of the initialization is
scanning down lists, GENSYMing symbols, and manipulating their property lists.
A fair amount of CONSing is done as well; some arithmetic is done, too. This
code is all in INIT.

INIT returns a list of the symbols—the list of all of the items in the data
base. Because the initialization in INIT could have created the property lists in
such a way that paging and cache operations would be coincidentally improved in
performance, the property lists have been localized, and RANDOMIZE is called
to transform the list of symbols into a randomly permuted list.

There is a random number generator provided that operates identically on all
2’s complement machines that support at least 8-bit arithmetic. The generator
uses the updator

n← 17n (mod 251)

Notice that 17 and 251 are relatively prime. Another way to have accom-
plished this would been to have supplied a list of numbers that could be recir-
culated. However, the operations performed by the random-number-generating
process are similar to many operations done in compilers, AI systems, and other
large systems—they all have state-preserving generators. In the generator here,
the global variable *rand* holds the current random number, and the state of
the random number generator is precisely this number. The function BROWSE-
RANDOM globally assigns to this variable. *rand* starts out as 21.

RANDOMIZE takes a list, L, and produces a permutation of it as follows:
Let L be the length of L. n is set to:

RAND (mod L),

where RAND is updated before n is computed. Then the nth element of L is
removed from L and placed (CONSed) at the head of the permutation list. The
removal is achieved using RPLACD.

§ 3.7 Browse 141

The main part of the benchmark is now done. For every symbol in the
permuted list, for every pattern on a predetermined list of patterns, for every
data item in the list of data items on the property list of that symbol, the pattern
is matched against the data item by using a pattern matcher.

The pattern matcher matches patterns that are tree structures containing
atoms, numbers, and pattern variables at the leaves against tree structures con-
taining atoms and numbers at the leaves. Here is one of the patterns:

(*a ?b *b ?b a *a a *b *a)

Pattern variables can be ‘?,’ which matches any node in the tree, ‘∗,’ which
matches 0 or more elements in a list, a symbol of the form ‘?-<var>,’ which
matches any node in the tree with multiple instances of this symbol matching the
same (EQ) node, and a symbol of the form ‘∗-<var>,’ which matches 0 or more
elements in list with multiple instances of this symbol matching EQUAL lists.
∗-variables can, therefore, cause backtracking to occur.

For example, in order to test whether a symbol is of the form ‘?-<var>,’ the
first character in the print name is extracted. In Common Lisp this is done by
getting the first character out of the string that represents that print name.

There are a lot of list-structure-manipulating operations in this benchmark.

Meter for Init
=’s 1901
1−’s 1591

Gensym’s 1101
Putprop’s 1100

Car’s 800
Cons’s 500
Cdr’s 405

Intern’s 101
Null’s 3

Rplacd’s 1
INIT 1
Total 7504

Meter for Randomize
=’s 2573

Cdr’s 2475
1−’s 2375
Null’s 101
Cons’s 100

Length’s 100
Rplacd’s 98

Car’s 4
RANDOMIZE 1

Total 7827

Meter for Seed
SEED 1
Total 1

Meter for Random
RANDOM 100

Total 100

142

Meter for Match
Car’s 1319800
Eq’s 755700
Null’s 504100
Cdr’s 483400
Cons’s 239200
Char1 226800

MATCH 213600
Nconc’s 69000
Return’s 600

Total 3812200

Meter for Investigate
Car’s 2700
Null’s 2001
Cdr’s 1600
Get’s 300
Total 6601

Note that the entry for PUTPROP in the table above refers to instances of

(SETF (GET X Y) Z)

3.7.3 Translation Notes

This benchmark is trivially translated to other Lisp dialects. Obtaining the
first character in the print name of a symbol is the significant problem to be solved
in the translation.

§ 3.7 Browse 143

3.7.4 Raw Data

Raw Time
Browse

Implementation CPU GC Real Paging
SAIL 13.64 39.52 82.68

Lambda 29.20 10.30
Lambda (MC) 19.70 18.58

3600 30.80 3.13
3600 + IFU 21.43 2.51
Dandelion 174.00 126.00
Dolphin 249.00 82.60
Dorado 52.50 41.90

S-1 10.20
PSL-SUN 61.94 16.85
PSL-20 23.81 4.89

PSL-3081 3.84 2.46
PSL-Cray 4.70 3.66
PSL-750 75.49 16.08

PSL-750 (VMS) 95.70 8.02
PSL-780 41.15 9.12

PSL-DN300
PSL-DN600
PSL-DN160
PSL-HP200 39.84 4.61
PSL-HP-UX 42.99 6.61

InterLispVax 780 111.53
MV4000 CL 181.54
MV8000 CL 136.20
MV10000 CL 57.91
3600 + FPA 21.43 2.51

750 NIL 1099.84 1226.53
8600 CL 38.69 30.37

144

Raw Time
Browse

Implementation CPU GC Real Paging
780 CL 118.51 86.50
785 CL 53.40 43.30
750 CL 195.11 164.05
730 CL 540.58 380.50
Perq 310.28

750 Franz
TrlOn & LclfYes 117.20 137.93
TrlOn & LclfNo 212.48 132.53
TrlOff & LclfYes 122.67 138.45
TrlOff & LclfNo 254.43 134.92

780 Franz
TrlOn & LclfYes 73.02 88.97
TrlOn & LclfNo 135.70 77.30
TrlOff & LclfYes 78.25 92.00
TrlOff & LclfNo 155.53 77.83

Franz 68000
TrlOn & LclfYes 63.68 167.35
TrlOn & LclfNo 66.22 168.38
TrlOff & LclfYes 92.40 159.79
TrlOff & LclfNo 113.10 160.79

InterLisp-10 70.32 26.98
LM-2 70.21

§ 3.7 Browse 145

My face is red.

I think what is going on here is that

INTERN is a big loser.

— Glenn Burke explaining a poor showing. (August 5, 1983.)

146

3.8 Destructive

3.8.1 The Program

;;; DESTRU -- Destructive operation benchmark
(defun destructive (n m)
(let ((l (do ((i 10. (1- i))

(a () (push () a)))
((= i 0) a))))

(do ((i n (1- i)))
((= i 0))

(cond ((null (car l))
(do ((l l (cdr l)))

((null l))
(or (car l)

(rplaca l (cons () ())))
(nconc (car l)

(do ((j m (1- j))
(a () (push () a)))
((= j 0) a)))))

(t
(do ((l1 l (cdr l1))

(l2 (cdr l) (cdr l2)))
((null l2))

(rplacd (do ((j (floor (length (car l2)) 2)
(1- j))

(a (car l2) (cdr a)))
((zerop j) a)

(rplaca a i))
(let ((n (floor (length (car l1)) 2)))
(cond ((= n 0) (rplaca l1 ())

(car l1))
(t
(do ((j n (1- j))

(a (car l1) (cdr a)))
((= j 1)
(prog1 (cdr a)

(rplacd a ())))
(rplaca a i))))))))))))

;;; call: (destructive 600. 50.)

§ 3.8 Destructive 147

3.8.2 Analysis

Destructive benchmarks the ‘destructive’ (hence the name) list utilities. It
does this by constructing a tree that is a list of lists and then destructively mod-
ifying its elements. This manipulation proceeds by means of a fairly elaborate
iterative control structure.

Destructive builds a list of lists, ten long, called L. Each element in this list
is set to a list of m ()’s by using RPLACA. Then the following operations are
performed n times: If the first element in L is empty, it is replenished by another
list of m ()’s. If it is not empty, then the following operations are performed on
each element of the list L but the first element. The middle of each sublist in the
list L is found. The sublist is chopped off at that point, and another part of the
existing structure is placed there instead. The middle of the sublist is determined
by dividing the length of the sublist by 2. Then the sublist is scanned to find
that spot, and while doing this, each element of the sublist is replaced with an
integer, i, which is the outside loop index. The part of the structure that is spliced
onto the end of the current sublist—which is the middle of the original list—is
the second half of the sublist that preceeds this one in L. The same operations are
performed on this preceding sublist as on this one to find the middle.

Suppose L is

(. . . (a1 . . . an . . . a2n)(b1 . . . bm . . . b2m),

and we are at iteration i. Then after one step of iteration this part of the list will
look like

(. . . (a1 . . . an)(i . . . ian+1 . . . a2n)

If parts of the lists run out, they are replenished by m ()’s. This sample
alteration assumes that the sublists are of even length.

Here is a tabulation of the number of operations performed by this bench-
mark:

148

Meter for Destructive
Rplacd’s 9167
Nconc’s 860
Rplaca’s 84550
Cons’s 43105

=’s 142635
1−’s 127980
Cdr’s 99537

Quotient’s 9252
Length’s 9252

Car’s 20824
Null’s 6686
Total 553848

3.8.3 Translation Notes

In the MacLisp version, the FIXSW flag is set. This forces all the generic
arithmetic functions to assume fixnum arguments. The translation to Common
Lisp required that QUOTIENT be replaced with an explicit integer divide using
FLOOR, since the / function could return a rational result.

§ 3.8 Destructive 149

Here is the INTERLISP code:

(DEFINEQ
(DESTRUCTIVE
(LAMBDA (n m)
(PROG ((l (COLLECTN 10)))
(for i from n by -1 to 1
do (if (NULL (CAR l))

then (for L on l
do (OR (CAR L)

(RPLACA L (LIST NIL)))
(NCONC (CAR L)
(COLLECTN m)))

else (for l1 on l as l2 on (CDR l)
do
(RPLACD
(for j from (IQUOTIENT

(FLENGTH (CAR l2))
2)

by -1 to 1 as a on (CAR l2) do (RPLACA a i)
finally (RETURN a))

(PROG ((n (IQUOTIENT (FLENGTH (CAR l1))
2)))

(RETURN (if (ZEROP n)
then (RPLACA l1 NIL)

(CAR l1)
else
(for j from n by -1 to 2 as a
on (CAR l1)
do (RPLACA a i)
finally
(RETURN
(PROG1 (CDR a)

(RPLACD a NIL)))))
))))))

(RETURN l)))))

And here is a simple macro:

(PUTPROPS COLLECTN MACRO
((N)
(PROG (VAL)

(FRPTQ N (PUSH VAL NIL)) (RETURN VAL))))

Notice that ‘fast’ versions of operations like FLENGTH were used. This code was
written for the D-machines in which FRPLACA and FRPLACD are exactly the
same as RPLACA and RPLACD.

150

3.8.4 Raw Data

Raw Time
Destructive

Implementation CPU GC Real Paging
SAIL 2.16 5.38 8.41

Lambda 4.00 1.09
Lambda (MC) 2.67 0.43

3600 3.03 0.43
3600 + IFU 2.18 0.26
Dandelion 17.58 9.27
Dolphin 27.00 7.97
Dorado 3.77 3.41

S-1 0.91
PSL-SUN 7.46 0.00
PSL-20 2.38 0.00

PSL-3081
PSL-Cray 0.44 0.00
PSL-750 7.22 0.00

PSL-750 (VMS) 8.40 0.00
PSL-780 3.87 0.00

PSL-DN300 10.16 0.00
PSL-DN600 10.59 0.00
PSL-DN160 7.43 0.00
PSL-HP200 4.25 0.00
PSL-HP-UX 4.69 0.00

InterLispVax 780 5.44
MV4000 CL 18.27
MV8000 CL 12.99
MV10000 CL 6.15
3600 + FPA 2.18 0.26

750 NIL 8.95 8.96
8600 CL 2.10 0.00

§ 3.8 Destructive 151

Raw Time
Destructive

Implementation CPU GC Real Paging
780 CL 6.38 0.00
785 CL 4.27 0.00
750 CL 11.30 0.00
730 CL 26.41 0.00
Perq 17.46

750 Franz
TrlOn & LclfYes 8.79 6.90
TrlOn & LclfNo 11.40 7.72
TrlOff & LclfYes 8.66 6.95
TrlOff & LclfNo 11.02 7.65

780 Franz
TrlOn & LclfYes 5.20 6.63
TrlOn & LclfNo 6.96 6.70
TrlOff & LclfYes 6.95 6.78
TrlOff & LclfNo 6.95 6.77

Franz 68000
TrlOn & LclfYes 9.57 0.00
TrlOn & LclfNo 9.54 0.00
TrlOff & LclfYes 11.88 2.65
TrlOff & LclfNo 11.88 2.68

InterLisp-10 9.20 1.42
LM-2 8.54

152

Very few programs that I have been associated with

abuse the numeric features of Lisp as much as these test programs.

If you were to give a paper including only these results,

I would protest that this was not typical

of Lisp programs. . . .

— Anonymous, criticizing my methodology. (May 11, 1982.)

153

3.9 Traverse

3.9.1 The Program

;;; TRAVERSE -- Benchmark that creates and traverses
;;; a tree structure.
(defstruct node
(parents ())
(sons ())
(sn (snb))
(entry1 ())
(entry2 ())
(entry3 ())
(entry4 ())
(entry5 ())
(entry6 ())
(mark ()))

(defvar *sn* 0)
(defvar *rand* 21.)
(defvar *count* 0)
(defvar *marker* nil)
(defvar *root*)
(defun snb ()
(setq *sn* (1+ *sn*)))

(defun seed ()
(setq *rand* 21.))

(defun traverse-random () (setq *rand* (mod (* *rand* 17.)
251.)))

154

(defun traverse-remove (n q)
(cond ((eq (cdr (car q)) (car q))

(prog2 () (caar q) (rplaca q ())))
((= n 0)
(prog2 () (caar q)

(do ((p (car q) (cdr p)))
((eq (cdr p) (car q))
(rplaca q

(rplacd p (cdr (car q))))))))
(t (do ((n n (1- n))

(q (car q) (cdr q))
(p (cdr (car q)) (cdr p)))

((= n 0) (prog2 () (car q) (rplacd q p)))))))
(defun traverse-select (n q)
(do ((n n (1- n))

(q (car q) (cdr q)))
((= n 0) (car q))))

(defun add (a q)
(cond ((null q)

‘(,(let ((x ‘(,a)))
(rplacd x x) x)))

((null (car q))
(let ((x ‘(,a)))
(rplacd x x)
(rplaca q x)))

(t (rplaca q
(rplacd (car q) ‘(,a .,(cdr (car q))))))))

§ 3.9 Traverse 155

(defun create-structure (n)
(let ((a ‘(,(make-node))))
(do ((m (1- n) (1- m))

(p a))
((= m 0) (setq a ‘(,(rplacd p a)))
(do ((unused a)

(used (add (traverse-remove 0 a) ()))
(x) (y))
((null (car unused))
(find-root (traverse-select 0 used) n))

(setq x (traverse-remove
(mod (traverse-random) n)
unused))

(setq y (traverse-select
(mod (traverse-random) n)
used))

(add x used)
(setf (node-sons y) ‘(,x .,(node-sons y)))
(setf (node-parents x) ‘(,y .,(node-parents x)))))

(push (make-node) a))))
(defun find-root (node n)
(do ((n n (1- n)))

((= n 0) node)
(cond ((null (node-parents node))

(return node))
(t (setq node (car (node-parents node)))))))

(defun travers (node mark)
(cond ((eq (node-mark node) mark) ())

(t (setf (node-mark node) mark)
(setq *count* (1+ *count*))
(setf (node-entry1 node) (not (node-entry1 node)))
(setf (node-entry2 node) (not (node-entry2 node)))
(setf (node-entry3 node) (not (node-entry3 node)))
(setf (node-entry4 node) (not (node-entry4 node)))
(setf (node-entry5 node) (not (node-entry5 node)))
(setf (node-entry6 node) (not (node-entry6 node)))
(do ((sons (node-sons node) (cdr sons)))

((null sons) ())
(travers (car sons) mark)))))

(defun traverse (root)
(let ((*count* 0))
(travers root (setq *marker* (not *marker*)))
count))

156

(defmacro init-traverse()
(prog2 (setq *root* (create-structure 100.)) ()))

(defmacro run-traverse ()
(do ((i 50. (1- i)))

((= i 0))
(traverse *root*)
(traverse *root*)
(traverse *root*)
(traverse *root*)
(traverse *root*)))

;;; to initialize, call: (init-traverse)
;;; to run traverse, call: (run-traverse)

3.9.2 Analysis

Traverse is split into two parts: the initialization and the actual traversal.
This benchmarks tries to measure the performance that can be expected from the
abstract data structure systems provided by the various Lisp dialects.

The basic idea is to build a directed graph of nodes and then to traverse it.
The nodes contain ten slots: one contains backpointers to parents, one contains
pointers to sons, one is a serial number (a fixed-point number), one is a ‘mark’
bit, and six are available for random information.

The initialization phase of the benchmark is building the random graph.
For this purpose there is a random number generator provided that operates
identically on all 2’s complement machines that support at least 8-bit arithmetic.
The generator uses the updator

n← 17n (mod 251)

A detailed discussion of this generator is given in the section describing the
Browse benchmark.

Similarly, there is a serial number generator, which uses the global variable
∗snb∗.

CREATE-STRUCTURE is called to produce a 100-node directed graph.
First, this program creates 100 nodes without linking them together. The

§ 3.9 Traverse 157

100 nodes are formed into a circular list; two circular lists are kept—a circu-
lar list of used nodes (used) and a circular list of unused nodes (unused). The
program ADD adds items to a circular list, and REMOVE removes the nth item
from a circular list and travels around the list more than once if necessary.

In CREATE-STRUCTURE, there is a loop that builds the random graph.
This is done by selecting two random numbers, n and m. Let

x = unusedn (mod length(unused))

and

y = usedm (mod length(used))

x is removed from unused and it is made a son of y. The loop continues until
unused is empty.

The graph is directed, and a root is found. All nodes are in the graph, which
can be proved by induction. A node is placed in used at the start of the loop. This
node has neither sons nor parents; it is a single connected component. At any
stage of the iteration, if unused is empty, we are done and there is one connected
component in used. If unused is not empty, then a node in it is connected to the
single connected component in used, and the resulting new graph in used has one
connected component. The induction is complete.

Because directed arcs are added to existing nodes in used, the graph has a
single root, and a procedure is used to find that root by tracing back along parent
arcs. This is not necessary because it is easy to prove that the root must be the
node that was first placed in used. However, this step adds a little to the runtime
of the benchmark.

At this stage, the remainder of the benchmark is to mark the graph, starting
at the root. There is a process that traverses the graph. At any node it does one
of two things: If that node has already been marked, then the process is done
with that node. If the node has not been marked, the process ‘flips’ the sense of
each entry (sets the contents of the entry to NOT of the entry—the entries flip
between NIL and T), and for each node in the sons of that node, it traverses that

158

node. The number of nodes visited by the traverser is counted by using a special
variable.

The marking is done 250 times to the graph.

The interesting aspect of this benchmark is that it uses DEFSTRUCT in
Common Lisp, so that it tests the quality of the abstract data structuring facilities
of the Lisp system, as much as anything.

Meter for Snb
1+’s 100
Total 100

Meter for Remove
Cdr’s 1093372
=’s 553818
1−’s 529455
Car’s 66207
Eq’s 17281

Rplacd’s 12231
Rplaca’s 100

Total 2272464

Meter for Select
=’s 541492
1−’s 529260
Cdr’s 529260
Car’s 24464
Total 1624476

Meter for Add
Car’s 36693
Null’s 24463

Rplacd’s 12232
Rplaca’s 12231
Conses 12231
Cdr’s 12231
Total 110081

Meter for Create-Structure
Setf’s 24462

RANDOM 24462
ADD 12232

REMOVE 12232
Null’s 12232
Car’s 12232

SELECT 12232
PARENTS 12231

SONS 12231
Cons’s 12331

1-’s 100
=’s 100

Rplacd’s 1
FIND-ROOT 1

Total 147079

Meter for Travers
MARK 3083000
Null’s 3082750
Cdr’s 3057750
Eq’s 3058000

TRAVERS 3057750
Car’s 3057750
Setf’s 175000
1+’s 25000

ENTRY1 25000
ENTRY2 25000
ENTRY3 25000
ENTRY4 25000
ENTRY5 25000
ENTRY6 25000

Total 18747000

§ 3.9 Traverse 159

Meter for Find-Root
=’s 1

PARENTS 1
Null’s 1
1−’s 0
Car’s 0
Total 3

160

3.9.3 Translation Notes

In INTERLISP, a DATATYPE is created to represent the nodes in the graph.
Here is the INTERLISP code

(RPAQQ TRAVERSECOMS
((RECORDS NODE)
(FNS SNB SEED RANDOM TREMOVE TSELECT TADD CREATE-STRUCTURE
FIND-ROOT TRAVERS TRAVERSE TIMIT)
(BLOCKS
(TRAVERSE
SNB SEED RANDOM TREMOVE TSELECT TADD CREATE-STRUCTURE
FIND-ROOT TRAVERS TRAVERSE TIMIT-10)

(ENTRIES TRAVERSE CREATE-STRUCTURE TIMIT-10))
(VARS (SN 0)

(RAND 21.0)
(COUNT 0)
(MARKER NIL))

(GLOBALVARS RAND SN MARKER ROOT)
(PROP GLOBALVAR ROOT)
(SPECVARS COUNT)))

[DECLARE: EVAL@COMPILE
(DATATYPE NODE ((PARENTS POINTER)

(SONS POINTER)
(SN WORD)
(ENTRY1 FLAG)
(ENTRY2 FLAG)
(ENTRY3 FLAG)
(ENTRY4 FLAG)
(ENTRY5 FLAG)
(ENTRY6 FLAG)
(MARK FLAG))

SN (SNB))
]

§ 3.9 Traverse 161

(/DECLAREDATATYPE
(QUOTE NODE)
(QUOTE (POINTER POINTER WORD FLAG FLAG FLAG FLAG

FLAG FLAG FLAG)))
(DEFINEQ
(SNB
(LAMBDA NIL
(SETQ SN (ADD1 SN))))

(SEED
(LAMBDA NIL
(SETQ RAND 21)))

(RANDOM
(LAMBDA NIL
(SETQ RAND (IMOD (ITIMES RAND 17.0)

251))))
(TREMOVE
(LAMBDA (N Q)
(COND
((EQ (CDR (CAR Q))

(CAR Q))
(PROG2 NIL (CAAR Q)

(RPLACA Q NIL)))
((ZEROP N)
(PROG2 NIL (CAAR Q)

(bind (P (CAR Q)) until (EQ (CDR P)
(CAR Q))

do (pop P)
finally (RETURN

(RPLACA
Q
(RPLACD
P
(CDR (CAR Q))))))))

(T (for N (Q (CAR Q))
(P (CDR (CAR Q))) from N by -1

until (ZEROP N)
do (pop Q)

(pop P)
finally (RETURN (PROG2 NIL (CAR Q)

(RPLACD Q P))))))))

162

(TSELECT
(LAMBDA (N Q)
(for N (Q (CAR Q)) from N by -1

until (ZEROP N) do (pop Q)
finally (RETURN (CAR Q)))))

(TADD
(LAMBDA (A Q)
(COND
((NULL Q)

(PROG ((X (LIST A)))
(RPLACD X X)
(RETURN (LIST X))))

((NULL (CAR Q))
(PROG ((X (LIST A)))

(RPLACD X X)
(RETURN (RPLACA Q X))))

(T (RPLACA Q (RPLACD (CAR Q)
(CONS A (CDR (CAR Q)))))))))

(CREATE-STRUCTURE
(LAMBDA (N)
(PROG ((A (LIST (create NODE))))
(RETURN
(for M (P A) from (SUB1 N) by -1
until (ZEROP M) do (push A (create NODE))
finally (PROGN (SETQ A (LIST (RPLACD P A)))

(RETURN
(bind (UNUSED A)

(USED (TADD (TREMOVE 0 A)
NIL))

X Y
until (NULL (CAR UNUSED))
do (SETQ X

(TREMOVE (IMOD (RANDOM) N)
UNUSED))

(SETQ Y (TSELECT (IMOD (RANDOM) N)
USED))

(TADD X USED)
(push (fetch SONS of Y) X)
(push (fetch PARENTS of X) Y)

finally
(RETURN
(FIND-ROOT
(TSELECT 0 USED) N))))))))))

§ 3.9 Traverse 163

(FIND-ROOT
(LAMBDA (NODE N)
(for N from N by -1

until (ZEROP N)
do (COND

((NULL (fetch PARENTS of NODE))
(RETURN NODE))
(T (SETQ NODE

(CAR (fetch PARENTS of NODE)))))
finally (RETURN NODE))))

(TRAVERS
(LAMBDA (NODE MARK)
(COND
((EQ (fetch MARK of NODE)

MARK)
NIL)

(T (replace MARK of NODE with MARK)
(SETQ COUNT (ADD1 COUNT))
(replace ENTRY1 of NODE with

(NOT (fetch ENTRY1 of NODE)))
(replace ENTRY2 of NODE with

(NOT (fetch ENTRY2 of NODE)))
(replace ENTRY3 of NODE with

(NOT (fetch ENTRY3 of NODE)))
(replace ENTRY4 of NODE with

(NOT (fetch ENTRY4 of NODE)))
(replace ENTRY5 of NODE with

(NOT (fetch ENTRY5 of NODE)))
(replace ENTRY6 of NODE with

(NOT (fetch ENTRY6 of NODE)))
(for SONS on (fetch SONS of NODE)
do (TRAVERS (CAR SONS) MARK))))))

(TRAVERSE
(LAMBDA (ROOT1)
(PROG ((COUNT 0))

(DECLARE (SPECVARS COUNT)
(GLOBALVARS MARKER))

(TRAVERS ROOT1 (SETQ MARKER (NOT MARKER)))
(RETURN COUNT))))

164

(TIMIT
(LAMBDA NIL
(TIMEALL (SETQ ROOT (CREATE-STRUCTURE 100)))
(TIMEALL (FRPTQ 50 (TRAVERSE ROOT)

(TRAVERSE ROOT)
(TRAVERSE ROOT)
(TRAVERSE ROOT)
(TRAVERSE ROOT)))))

(TIMIT-10
(LAMBDA NIL
(PRINT (TIME (SETQ ROOT (CREATE-STRUCTURE 100)) 1 3))
(PRINT (TIME (FRPTQ 50 (TRAVERSE ROOT)

(TRAVERSE ROOT)
(TRAVERSE ROOT)
(TRAVERSE ROOT)
(TRAVERSE ROOT)) 1 3))))

)

§ 3.9 Traverse 165

3.9.4 Raw Data

Raw Time
Traverse Initialization

Implementation CPU GC Real Paging
SAIL 6.69 45.14 51.82

Lambda 18.70 1.20
Lambda (MC) 11.50 0.14

3600 8.62 0.33
3600 + IFU 6.37 0.25
Dandelion 48.00 1.16
Dolphin 100.00 1.25
Dorado 20.50 0.49

S-1 1.93
PSL-SUN 30.07 0.00
PSL-20 7.59 0.00

PSL-3081 1.80 0.00
PSL-Cray
PSL-750 35.53 0.00

PSL-750 (VMS) 31.20 0.00
PSL-780 15.06 0.00

PSL-DN300
PSL-DN600
PSL-DN160 29.84 0.00
PSL-HP200 13.54 0.00
PSL-HP-UX 14.89 0.00

InterLispVax 780 24.78
MV4000 CL 96.26
MV8000 CL 74.39
MV10000 CL 27.77
3600 + FPA 6.37 0.25

750 NIL 38.92 39.71
8600 CL 6.12 0.00

166

Raw Time
Traverse Initialization

Implementation CPU GC Real Paging
780 CL 20.76 0.00
785 CL 13.10 0.00
750 CL 35.44 0.00
730 CL 94.77 0.00
Perq 46.53

750 Franz
TrlOn & LclfYes 32.98 19.30
TrlOn & LclfNo 35.44 19.72
TrlOff & LclfYes 33.17 20.75
TrlOff & LclfNo 51.23 21.03

780 Franz
TrlOn & LclfYes 18.47 11.80
TrlOn & LclfNo 20.42 11.77
TrlOff & LclfYes 18.70 12.73
TrlOff & LclfNo 29.61 12.82

Franz 68000
TrlOn & LclfYes 43.32 21.17
TrlOn & LclfNo 44.98 21.10
TrlOff & LclfYes 55.16 24.52
TrlOff & LclfNo 70.64 24.48

InterLisp-10 37.62 6.09
LM-2 41.23

§ 3.9 Traverse 167

Raw Time
Traverse

Implementation CPU GC Real Paging
SAIL 23.96 0.00 23.96

Lambda 138.60 0.00
Lambda (MC) 48.40 4.24

3600 49.95 0.00
3600 + IFU 35.34 0.00
Dandelion 181.00 0.00
Dolphin 299.00 0.00
Dorado 63.90 0.00

S-1 30.10
PSL-SUN 125.00 0.00
PSL-20 43.88 0.00

PSL-3081 9.89 0.00
PSL-Cray
PSL-750 185.65 0.00

PSL-750 (VMS) 146.62 0.00
PSL-780 72.35 0.00

PSL-DN300
PSL-DN600
PSL-DN160 56.16 0.00
PSL-HP200 108.69 0.00
PSL-HP-UX 102.36 0.00

InterLispVax 780 255.76
MV4000 CL 134.68
MV8000 CL 90.12
MV10000 CL 45.86
3600 + FPA 35.34 0.00

750 NIL 273.25 273.32
8600 CL 40.65 0.00

168

Raw Time
Traverse

Implementation CPU GC Real Paging
780 CL 161.68 0.00
785 CL 86.60 0.00
750 CL 217.21 0.00
730 CL 804.02 0.00
Perq 442.70

750 Franz
TrlOn & LclfYes 132.62 0.00
TrlOn & LclfNo 244.01 0.00
TrlOff & LclfYes 132.60 0.00
TrlOff & LclfNo 911.20 0.00

780 Franz
TrlOn & LclfYes 82.98 0.00
TrlOn & LclfNo 156.20 0.00
TrlOff & LclfYes 83.03 0.00
TrlOff & LclfNo 559.58 0.00

Franz 68000
TrlOn & LclfYes 129.12 0.00
TrlOn & LclfNo 201.98 0.00
TrlOff & LclfYes 129.25 0.00
TrlOff & LclfNo 903.48 0.00

InterLisp-10 85.86 0.00
LM-2 215.68

§ 3.9 Traverse 169

While I was editing UCADR,

I decided to microcode a two-argument NCONC.

With this microcoded NCONC,

the SCCPP benchmark radically improved.

— David L. Andre talking about an abandoned benchmark. (August 4, 1982.)

This test seems to suffer from

an incredibly cretinously written NCONC.

— David L. Andre an earlier remark about NCONC. (August 4, 1982.)

170

3.10 Derivative

3.10.1 The Program

;;; DERIV -- This is the Common Lisp version of a symbolic
;;; derivative benchmark written by Vaughan Pratt.
;;; It uses a simple subset of Lisp and does a lot of
;;; CONSing.
(defun deriv-aux (a) (list ’/ (deriv a) a))

(defun deriv (a)
(cond
((atom a)
(cond ((eq a ’x) 1) (t 0)))
((eq (car a) ’+)
(cons ’+ (mapcar #’deriv (cdr a))))
((eq (car a) ’-)
(cons ’- (mapcar #’deriv

(cdr a))))
((eq (car a) ’*)
(list ’*

a
(cons ’+ (mapcar #’deriv-aux (cdr a)))))

((eq (car a) ’/)
(list ’-

(list ’/
(deriv (cadr a))
(caddr a))

(list ’/
(cadr a)
(list ’*

(caddr a)
(caddr a)
(deriv (caddr a))))))

(t ’error))))

(defun run ()
(declare (fixnum i)) ;improves the code a little
(do ((i 0 (1+ i)))

((= i 1000.)) ;runs it 5000 times
(deriv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(deriv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(deriv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(deriv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(deriv ’(+ (* 3 x x) (* a x x) (* b x) 5))))

;;; call: (run)

§ 3.10 Derivative 171

3.10.2 Analysis

This benchmark performs a simple symbolic derivative in which the data
representation is the usual S-expression representation for functions. The main
driving function, DERIV, simply dispatches off a built-in table of operators to a
function that knows how to take the derivative of a form that is that operator
applied to some subforms. Thus, if one were to take the derivative of

(TIMES form1 form2)

a special program that knew about how to take derivatives of multiplications would
be invoked. This table is simply a large COND whose clauses are sequentially
tried. Aside from executing the control structure, the program CONSes a lot
because the derivative is constructed as the algorithm proceeds.

The derivative of 3x2 + ax2 + bx + 5 is taken 5000 times with this program.
This is done with a loop in which the derivative is taken 5 times. This benchmark
is CONS and function-call heavy.

Meter for Der1
Cons’s 120000
DER1 40000
Total 160000

Meter for Deriv
Cons’s 160000
Eq’s 95000

DERIV 65000
Car’s 50000
Cdr’s 20000

Mapcar’s 20000
Total 410000

Meter for Run
=’s 1001
1+’s 1000
Total 2001

3.10.3 Translation Notes

In every Lisp, this benchmark is very straightforwardly written.

172

3.10.4 Raw Data

Raw Time
Deriv

Implementation CPU GC Real Paging
SAIL 1.81 17.09 30.23

Lambda 6.40 3.70
Lambda (MC) 3.62 3.80

3600 5.12 1.40
3600 + IFU 3.79 0.99
Dandelion 23.90 52.20
Dolphin 40.30 39.40
Dorado 15.70 6.80

S-1 4.99
PSL-SUN 13.77 3.99
PSL-20 5.64 1.23

PSL-3081 1.06 1.17
PSL-Cray 1.30 1.16
PSL-750 15.36 3.87

PSL-750 (VMS) 20.65 2.66
PSL-780 8.58 2.10

PSL-DN300
PSL-DN600 26.69 5.31
PSL-DN160 14.11 1.70
PSL-HP200 14.82 0.00
PSL-HP-UX 15.66 2.97

InterLispVax 780 23.10
MV4000 CL 28.22
MV8000 CL 19.10
MV10000 CL 5.60
3600 + FPA 3.79 0.99

750 NIL 22.69 24.63
8600 CL 4.27 9.34

§ 3.10 Derivative 173

Raw Time
Deriv

Implementation CPU GC Real Paging
780 CL 13.76 26.20
785 CL 10.30 13.70
750 CL 24.50 49.63
730 CL 62.54 116.96
Perq 64.45

750 Franz
TrlOn & LclfYes 13.86 22.20
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

780 Franz
TrlOn & LclfYes 11.00 16.00
TrlOn & LclfNo
TrlOff & LclfYes 8.29 16.90
TrlOff & LclfNo

Franz 68000
TrlOn & LclfYes 14.37 7.93
TrlOn & LclfNo 17.03 8.04
TrlOff & LclfYes 18.97 10.60
TrlOff & LclfNo 45.80 10.70

InterLisp-10 40.21 7.74
LM-2 23.90

174

The benchmark should solve a problem

whose computer solution is frequently

called for.

The programming style used

should be one that helps make programs

more writable, readable, maintainable, and portable.

The benchmark should implement

an efficient solution to the problem it solves.

— Vaughan Pratt philosophizing about benchmarks. (October 20, 1981.)

175

3.11 Data-Driven Derivative

3.11.1 The Program

;;; DDERIV -- The Common Lisp version of a
;;; symbolic derivative benchmark, written by Vaughan Pratt.
;;;
;;; This benchmark is a variant of the simple symbolic
;;; derivative program (DERIV). The main change is that it is
;;; ‘table-driven.’ Instead of using a large COND that branches
;;; on the CAR of the expression, this program finds the code
;;; that will take the derivative on the property list of the
;;; atom in the CAR position. So, when the expression is (+ .
;;; <rest>), the code stored under the atom ’+ with indicator
;;; DERIV will take <rest> and return the derivative for ’+. The
;;; way that MacLisp does this is with the special form: (DEFUN
;;; (FOO BAR) ...). This is exactly like DEFUN with an atomic
;;; name in that it expects an argument list and the compiler
;;; compiles code, but the name of the function with that code
;;; is stored on the property list of FOO under the indicator
;;; BAR, in this case.

(defun dderiv-aux (a)
(list ’/ (dderiv a) a))

(defun +dderiv (a)
(cons ’+ (mapcar ’dderiv a)))

(defun -dderiv (a)
(cons ’- (mapcar ’dderiv a)))

(defun *dderiv (a)
(list ’* (cons ’* a)

(cons ’+ (mapcar ’dderiv-aux a))))

(defun /dderiv (a)
(list ’-

(list ’/
(dderiv (car a))
(cadr a))

(list ’/
(car a)
(list ’*

(cadr a)
(cadr a)
(dderiv (cadr a))))))

(mapc
#’(lambda (op fun)

(setf
(get op ’dderiv)
(symbol-function fun)))

’((+ +dderiv)(- -dderiv)(* *dderiv)(/ /dderiv)))

176

(defun dderiv (a)
(cond
((atom a)
(cond ((eq a ’x) 1) (t 0)))
(t (let ((dderiv (get (car a) ’dderiv)))

(cond (dderiv (funcall dderiv (cdr a)))
(t ’error))))))

(defun run ()
(declare (fixnum i))
(do ((i 0 (1+ i)))

((= i 1000.))
(dderiv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(dderiv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(dderiv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(dderiv ’(+ (* 3 x x) (* a x x) (* b x) 5))
(dderiv ’(+ (* 3 x x) (* a x x) (* b x) 5))))

;;; call: (run)

3.11.2 Analysis

This benchmark is exactly like DERIV except that functions taking deriva-
tives of specific operators are located on the property list of the operator rather
than buried in a piece of code. So, instead of a COND clause to do the dispatch,
a GET and a FUNCALL are used. This is referred to as the ‘data driven’ version
of DERIV.

Meter for Dderiv-Aux
Conses 120000

DDERIV-AUX 40000
Total 160000

Meter for +Dderiv
Cons’s 50000

Mapcar’s 5000
+DDERIV 5000

Total 60000

Meter for ∗Dderiv
Cons’s 180000

Mapcar’s 15000
∗DDERIV 15000

Total 210000

Meter for −Dderiv
Mapcars 0
Conses 0
−DDERIV 0

Total 0

Meter for /Dderiv
Car’s 0
Cons’s 0

/DDERIV 0
Total 0

§ 3.11 Data-Driven Derivative 177

Meter for Dderiv
DERIV 65000

Eq’s 45000
Cdr’s 20000

Funcall’s 20000
Car’s 20000
Get’s 20000
Total 190000

3.11.3 Translation Notes

Some Lisp dialects do not support FUNCALL and need to use APPLY in-
stead. In this case, an extra CONS per FUNCALL is performed.

178

3.11.4 Raw Data

Raw Time
Dderiv

Implementation CPU GC Real Paging
SAIL 2.83 18.28 38.62

Lambda 7.10 4.10
Lambda (MC) 5.92 3.10

3600 5.24 1.51
3600 + IFU 3.89 1.06
Dandelion 33.30 59.50
Dolphin 56.60 43.60
Dorado 17.70 6.80

S-1 3.27
PSL-SUN 15.67 4.01
PSL-20 6.00 2.07

PSL-3081 1.22 1.11
PSL-Cray 1.44 1.16
PSL-750 19.44 3.89

PSL-750 (VMS) 24.51 2.41
PSL-780 10.23 2.10

PSL-DN300 28.95 6.24
PSL-DN600 27.29 5.22
PSL-DN160 14.97 1.79
PSL-HP200 16.03 0.00
PSL-HP-UX 16.78 2.90

InterLispVax 780 29.96
MV4000 CL 33.63
MV8000 CL 23.96
MV10000 CL 8.11
3600 + FPA 3.89 1.06

750 NIL 26.90 29.00
8600 CL 6.58 9.85

§ 3.11 Data-Driven Derivative 179

Raw Time
Dderiv

Implementation CPU GC Real Paging
780 CL 19.00 21.60
785 CL 12.40 13.90
750 CL 32.90 45.80
730 CL
Perq 72.52

750 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

780 Franz
TrlOn & LclfYes 9.79 17.58
TrlOn & LclfNo
TrlOff & LclfYes 13.52 17.28
TrlOff & LclfNo

Franz 68000
TrlOn & LclfYes 16.95 92.50
TrlOn & LclfNo 20.53 96.27
TrlOff & LclfYes 21.62 92.80
TrlOff & LclfNo 50.88 96.48

InterLisp-10 28.06 9.12
LM-2 23.67

180

I find it rather startling

that increasing memory size by 33%

adds 300% in speed.

— Peter Friedland discussing a performance experiment. (November 10, 1982.)

181

3.12 Another Data-Driven Derivative

3.12.1 The Program

The following program is a variant of DDERIV. It optimizes FUNCALL by
using a FUNCALL-like function that assumes it is being handed compiled code.
Because this is mainly a MacLisp optimization, the program is shown in MacLisp:

(declare (mapex t))

(defun der1 (a) (list ’quotient (deriv a) a))

(defun (plus deriv deriv) (a)
(cons ’plus (mapcar ’deriv a)))

(defun (difference deriv deriv) (a)
(cons ’difference (mapcar ’deriv

a)))

(defun (times deriv deriv) (a)
(list ’times (cons ’times a)

(cons ’plus (mapcar ’der1 a))))

(defun (quotient deriv deriv) (a)
(list ’difference

(list ’quotient
(deriv (car a))
(cadr a))

(list ’quotient
(car a)
(list ’times

(cadr a)
(cadr a)
(deriv (cadr a))))))

(defun deriv (a)
(cond
((atom a)
(cond ((eq a ’x) 1) (t 0)))

(t (let ((deriv (get (car a) ’deriv)))
(cond (deriv (subrcall t deriv (cdr a)))

(t ’error))))))

(defun run ()
(declare (fixnum i))
(do ((i 0 (1+ i)))

((= i 1000.))
(deriv ’(plus (times 3 x x) (times a x x) (times b x) 5))
(deriv ’(plus (times 3 x x) (times a x x) (times b x) 5))
(deriv ’(plus (times 3 x x) (times a x x) (times b x) 5))
(deriv ’(plus (times 3 x x) (times a x x) (times b x) 5))
(deriv ’(plus (times 3 x x) (times a x x) (times b x) 5))))

182

3.12.2 Analysis

This benchmark is exactly like DDERIV, but it uses the fact that the
derivative-taking functions are compiled. That is, in MacLisp, FUNCALL in-
ternally tests whether the function it has been handed as its first argument is
compiled or interpreted and does different things in each case; it also checks
whether it has been handed a LAMBDA expression.

In this MacLisp-specific benchmark, SUBRCALL is used in place of FUN-
CALL. SUBRCALL avoids the checks mentioned.

Meter for Der1
Cons’s 120000
DER1 40000
Total 160000

Meter for Plus-Deriv
Cons’s 50000

Mapcar’s 5000
PLUS-DERIV 5000

Total 60000

Meter for Times-Deriv
Cons’s 300000

Mapcar’s 15000
TIMES-DERIV 15000

Total 330000

Meter for Difference-Deriv
Mapcar’s 0
Cons’s 0

DIFFERENCE-DERIV 0
Total 0

Meter for Quotient-Deriv
Car’s 0
Cons’s 0

QUOTIENT-DERIV 0
Total 0

Meter for Deriv
DERIV 65000

Eq’s 45000
Get’s 40000
Cdr’s 20000

SUBRcall’s 20000
Car’s 20000
Total 210000

3.12.3 Translation Notes

Only NIL, MacLisp, and ZetaLisp on the Symbolics LM-2 machine report
times for this benchmark.

§ 3.12 Another Data-Driven Derivative 183

3.12.4 Raw Data

Raw Time
Fdderiv

Implementation CPU GC Real Paging
SAIL 2.15 18.28 34.62

Lambda
Lambda (MC)

3600
3600 + IFU
Dandelion
Dolphin
Dorado

S-1
PSL-SUN
PSL-20

PSL-3081
PSL-Cray
PSL-750

PSL-750 (VMS)
PSL-780

PSL-DN300
PSL-DN600
PSL-DN160
PSL-HP200
PSL-HP-UX

InterLispVax 780
MV4000 CL
MV8000 CL
MV10000 CL
3600 + FPA

750 NIL 26.45 28.29
8600 CL

184

Raw Time
Fdderiv

Implementation CPU GC Real Paging
780 CL
785 CL
750 CL
730 CL
Perq

750 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

780 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

Franz 68000
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

InterLisp-10
LM-2 25.20

§ 3.12 Another Data-Driven Derivative 185

The point is that

we are concerned about what will happen when real users

use the thing for program development,

not what happens when the implementors

optimize performance.

— Charles Hedrick philosophizing on benchmarking. (May 30, 1983.)

186

3.13 Division by 2

3.13.1 The Program

;;; DIV2 -- Benchmark that divides by 2 using lists of n NIL’s.
;;; This file contains a recursive as well as an iterative test.

(defun create-n (n)
(do ((n n (1- n))

(a () (push () a)))
((= n 0) a)))

(defvar ll (create-n 200.))

(defun iterative-div2 (l)
(do ((l l (cddr l))

(a () (push (car l) a)))
((null l) a)))

(defun recursive-div2 (l)
(cond ((null l) ())

(t (cons (car l) (recursive-div2 (cddr l))))))

(defun test-1 (l)
(do ((i 300. (1- i)))

((= i 0))
(iterative-div2 l)
(iterative-div2 l)
(iterative-div2 l)
(iterative-div2 l)))

(defun test-2 (l)
(do ((i 300. (1- i)))

((= i 0))
(recursive-div2 l)
(recursive-div2 l)
(recursive-div2 l)
(recursive-div2 l)))

;;; for the iterative test call: (test-1 ll)
;;; for the recursive test call: (test-2 ll)

3.13.2 Analysis

In this benchmark, numbers are represented in unary form: n is represented
as a list of n ()’s. The benchmark divides numbers in this representation by 2
by returning a list of every other () in the original list. There are two versions of
this program: One is the simple recursive definition, and the other is an iterative
definition. The test is to divide 200 by 2 1200 times for each version.

§ 3.13 Division by 2 187

As is apparent from the metering, these benchmarks simply CONS, take CAR
and CDR, and do some function calling or GO’ing.

These benchmarks were proposed by a computer scientist at Bell Laborato-
ries. He thought that they best epitomized what his programs did—function-calls,
CONS, CAR, CDR, and iteration. He wanted to find out how Franz Lisp on a
Vax 11/780 did vis-à-vis other implementations. He was surprised to find out
that the iterative version ran slower than the recursive one on the Vax 11/780.
After some investigation, we found out that the iterative version had a number
of sequential MOVL instructions in a row—more than the recursive version. At
that time (1982), the Vax 11/780 did very poorly on MOVL’s, and by counting
cycle times we were able to justify the results we saw. Since then, the problem
has been corrected on Vaxes and possibly in Franz itself.

Meter for Iterative Div2
Cdr’s 240000
Null’s 121200
Cons’s 120200
Car’s 120000

ITERATIVE-DIV2 1200
=’s 201
1−’s 200

CREATE-N 1
Total 603002

Meter for Recursive Div2
Cdr’s 240000
Null’s 121200

RECURSIVE-DIV2 121200
Cons’s 120200
Car’s 120000
1−’s 200
=’s 201

CREATE-N 1
Total 723002

3.13.3 Translation Notes

The INTERLISP versions are straightforward:

(DEFINEQ
(DIV2
(LAMBDA (l)
(for L A on l by (CDDR L) do (push A (CAR L))
finally (RETURN A))))

(DV2
(LAMBDA (l)
(if (NULL l)

then NIL
else (CONS (CAR l)

(DV2 (CDDR l)))))))

188

3.13.4 Raw Data

Raw Time
Iterative Div2

Implementation CPU GC Real Paging
SAIL 0.84 8.45 17.25

Lambda 3.80 3.60
Lambda (MC) 2.90 3.00

3600 1.85 1.04
3600 + IFU 1.51 0.71
Dandelion 23.80 8.50
Dolphin 19.90 16.70
Dorado 3.43 8.54

S-1 0.82
PSL-SUN 6.95 0.00
PSL-20 2.30 0.00

PSL-3081 0.45 0.00
PSL-Cray 0.57 0.00
PSL-750 8.02 2.09

PSL-750 (VMS) 9.98 0.00
PSL-780 3.80 1.09

PSL-DN300
PSL-DN600 13.20 2.62
PSL-DN160 6.60 0.88
PSL-HP200 6.34 0.00
PSL-HP-UX 6.58 0.00

InterLispVax 780 3.76
MV4000 CL 8.83
MV8000 CL 6.54
MV10000 CL 2.86
3600 + FPA 1.85 1.04

750 NIL 9.44 9.94
8600 CL 1.65 0.00

§ 3.13 Division by 2 189

Raw Time
Iterative Div2

Implementation CPU GC Real Paging
780 CL 5.00 0.00
785 CL 3.20 0.00
750 CL 14.32 24.85
730 CL 18.21 0.00
Perq 27.30

750 Franz
TrlOn & LclfYes 5.50 20.22
TrlOn & LclfNo 5.37 20.47
TrlOff & LclfYes 5.57 21.18
TrlOff & LclfNo 5.60 21.28

780 Franz
TrlOn & LclfYes 3.35 16.83
TrlOn & LclfNo 3.20 16.77
TrlOff & LclfYes 3.33 16.70
TrlOff & LclfNo 3.45 16.75

Franz 68000
TrlOn & LclfYes 6.52 38.15
TrlOn & LclfNo 6.43 38.15
TrlOff & LclfYes 6.47 38.37
TrlOff & LclfNo 6.75 38.16

InterLisp-10 131.85 5.02
LM-2 8.63

190

Raw Time
Recursive Div2

Implementation CPU GC Real Paging
SAIL 1.28 8.90 18.08

Lambda 5.60 3.50
Lambda (MC) 2.80 3.30

3600 2.89 1.03
3600 + IFU 2.50 0.71
Dandelion 24.80 8.50
Dolphin 22.40 17.30
Dorado 4.08 8.66

S-1 1.49
PSL-SUN 6.42 0.00
PSL-20 2.34 0.00

PSL-3081 0.42 0.00
PSL-Cray 0.60 0.00
PSL-750 7.29 2.78

PSL-750 (VMS) 10.03 2.78
PSL-780 3.75 1.06

PSL-DN300
PSL-DN600 6.70 2.63
PSL-DN160 3.26 0.88
PSL-HP200 5.87 0.00
PSL-HP-UX 5.95 0.00

InterLispVax 780 8.44
MV4000 CL 13.14
MV8000 CL 8.91
MV10000 CL 4.48
3600 + FPA 2.89 1.03

750 NIL 14.70 15.15
8600 CL 2.52 4.61

§ 3.13 Division by 2 191

Raw Time
Recursive Div2

Implementation CPU GC Real Paging
780 CL 9.84 12.85
785 CL 5.38 8.91
750 CL 9.07 0.00
730 CL 43.89 56.48
Perq 32.92

750 Franz
TrlOn & LclfYes 5.75 20.53
TrlOn & LclfNo 11.30 20.58
TrlOff & LclfYes 5.57 21.47
TrlOff & LclfNo 40.42 21.32

780 Franz
TrlOn & LclfYes 3.55 16.78
TrlOn & LclfNo 7.68 16.97
TrlOff & LclfYes 3.47 16.75
TrlOff & LclfNo 28.88 17.17

Franz 68000
TrlOn & LclfYes 6.93 38.50
TrlOn & LclfNo 9.82 38.71
TrlOff & LclfYes 6.92 38.53
TrlOff & LclfNo 38.94 38.98

InterLisp-10 68.20 4.95
LM-2 12.38

192

If naive users write cruddy code,

the compiler should fix it up for them, yes?

I’d say that most Stanford PhD’s in Computer Science

qualify as ‘naive users.’

— Anonymous Implementor Working for a Major

Lisp Vendor waxing cynical. (July 18, 1983.)

193

3.14 FFT

3.14.1 The Program

;;; FFT -- This is an FFT benchmark written by Harry Barrow.
;;; It tests a variety of floating point operations,
;;; including array references.
(defvar re (make-array

1025.
:element-type ’single-float
:initial-element 0.0))

(defvar im (make-array
1025.
:element-type ’single-float
:initial-element 0.0))

(defun fft (areal aimag)
;;; fast fourier transform
;;; areal = real part
;;; aimag = imaginary part
(prog
(ar ai i j k m n le le1 ip nv2 nm1 ur ui wr wi tr ti)
;;; initialize
(setq ar areal

ai aimag n (array-dimension ar 0)
n (1- n) nv2 (floor n 2)
;;; compute m = log(n)
nm1 (1- n) m 0
i 1)

l1 (cond ((< i n) (setq m (1+ m) i (+ i i)) (go l1)))
(cond ((not (equal n (expt 2 m)))

(princ "error ... array size not a power of two.")
(read) (return (terpri))))

;;; interchange elements in bit-reversed order
(setq j 1 i 1)

l3 (cond ((< i j)
(setq tr (aref ar j) ti (aref ai j))
(setf (aref ar j) (aref ar i))
(setf (aref ai j) (aref ai i))
(setf (aref ar i) tr)
(setf (aref ai i) ti)))

(setq k nv2)

194

l6 (cond ((< k j)
(setq j (- j k) k (/ k 2))
(go l6)))

(setq j (+ j k)
i (1+ i))

(cond ((< i n)
(go l3)))

;;; loop thru stages
(do ((l 1 (1+ l)))

((> l m))
(setq le (expt 2 l)

le1 (floor le 2) ur 1.0
ui 0. wr (cos (/ pi (float le1)))
wi (sin (/ pi (float le1))))

;;; loop thru butterflies
(do ((j 1 (1+ j)))

((> j le1))
;;; do a butterfly
(do ((i j (+ i le)))

((> i n))
(setq ip (+ i le1)

tr (- (* (aref ar ip) ur)
(* (aref ai ip) ui))

ti (+ (* (aref ar ip) ui)
(* (aref ai ip) ur)))

(setf (aref ar ip) (- (aref ar i) tr))
(setf (aref ai ip) (- (aref ai i) ti))
(setf (aref ar i) (+ (aref ar i) tr))
(setf (aref ai i) (+ (aref ai i) ti))))

(setq tr (- (* ur wr) (* ui wi))
ti (+ (* ur wi) (* ui wr))
ur tr ui ti))

(return t)))
;;; the timer, which does 10 calls on fft
(defmacro fft-bench ()
’(do ((ntimes 0 (1+ ntimes)))

((= ntimes 10.))
(fft re im)))

;;; call: (fft-bench)

§ 3.14 FFT 195

3.14.2 Analysis

This is a 1024-point complex FFT written by Harry Barrow. As can be seen,
the programming style is FORTRAN-like. The data is all 0.0’s.

Meter for FFT
Flonum Array Hacking 2087680

Floating ∗’s 245720
Flonum Array Accesses 224640
Flonum Array Stores 224640

Floating +’s 163830
Floating −’s 163830

>’s 71870
<’s 40930
1+’s 20660

Integer /’s 10240
FLOAT’s 200

Floating /’s 200
Exponentiation’s 110

SIN 100
COS 100
1−’s 20
Get’s 20

Return’s 10
Equal’s 10
Total 3254810

196

3.14.3 Translation Notes

The INTERLISP code presented uses a Common Lisp array package written
by Jonl White. Common Lisp arrays as implemented by this package are faster
than the standard INTERLISP arrays.

(RPAQQ FFTCOMS
((FILES (SYSLOAD FROM LISPUSERS)

CMLARRAY)
(FNS FFT)
(VARS (RE (MAKEARRAY 1025 (QUOTE INITIALELEMENT)

0.0))
(IM (MAKEARRAY 1025 (QUOTE INITIALELEMENT)

0.0)))
(MACROS IEXPT)))

(DEFINEQ
(FFT
(LAMBDA (AREAL AIMAG)
(PROG (AR AI PI I J K M N LE LE1 IP NV2

NM1 UR UI WR WI TR TI)
(SETQ AR AREAL)
(SETQ AI AIMAG)
(SETQ PI 3.141593)
(SETQ N (ARRAYDIMENSION AR 0))
(add N -1)
(SETQ NV2 (LRSH N 1))
(SETQ NM1 (SUB1 N))
(SETQ M 0)
(SETQ I 1)

L1 (until (NOT (ILESSP I N))
do (* Compute M = log (N))

(add M 1)
(add I I))

§ 3.14 FFT 197

(if (NOT (IEQP N (IEXPT 2 M)))
then
(PRINC
"Error ... array size not a power of two.")

(READ)
(RETURN (TERPRI)))

(SETQ J 1) (* Interchange elements)
(SETQ I 1) (* in bit-reversed order)

L3 (repeatuntil (NOT (ILESSP I N))
do (if (ILESSP I J)

then (SETQ TR (PAREF AR J))
(SETQ TI (PAREF AI J))
(PASET (PAREF AR I)

AR J)
(PASET (PAREF AI I)

AI J)
(PASET TR AR I)
(PASET TI AI I))

(SETQ K NV2)
L6
(until (NOT (ILESSP K J))

do (SETQ J (IDIFFERENCE J K))
(SETQ K (LRSH K 1)))

(SETQ J (IPLUS J K))
(add I 1))

(for L to M
do (* Loop thru stages)

(SETQ LE (IEXPT 2 L))
(SETQ LE1 (LRSH LE 1))
(SETQ UR 1.0)
(SETQ UI 0.0)
(SETQ WR (COS (FQUOTIENT PI (FLOAT LE1))))
(SETQ WI (SIN (FQUOTIENT PI (FLOAT LE1))))

198

(for J to LE1
do (* Loop thru butterflies)

(for I from J by LE until (IGREATERP I N)
do (* Do a butterfly)

(SETQ IP (IPLUS I LE1))
(SETQ TR

(FDIFFERENCE
(FTIMES (PAREF AR IP)

UR)
(FTIMES (PAREF AI IP)

UI)))
(SETQ TI

(FPLUS
(FTIMES (PAREF AR IP)

UI)
(FTIMES (PAREF AI IP)

UR)))
(PASET (FDIFFERENCE (PAREF AR I)

TR)
AR IP)

(PASET (FDIFFERENCE (PAREF AI I)
TI)

AI IP)
(PASET (FPLUS (PAREF AR I)

TR)
AR I)

(PASET (FPLUS (PAREF AI I)
TI)

AI I))
(SETQ TR (FDIFFERENCE (FTIMES UR WR)

(FTIMES UI WI)))
(SETQ TI (FPLUS (FTIMES UR WI)

(FTIMES UI WR)))
(SETQ UR TR)
(SETQ UI TI)))

(RETURN T))))
)
(RPAQ RE (MAKEARRAY 1025 (QUOTE INITIALELEMENT)

0.0))
(RPAQ IM (MAKEARRAY 1025 (QUOTE INITIALELEMENT)

0.0))

§ 3.14 FFT 199

(DECLARE: EVAL@COMPILE
(PUTPROPS IEXPT MACRO (X
(PROG ((N (CAR (CONSTANTEXPRESSIONP (CAR X))))

(E (CADR X)))
(RETURN (if (AND (FIXP N)

(POWEROFTWOP N))
then (if (NEQ 2 N)

then
(SETQ
E
(BQUOTE
(ITIMES
,(SUB1 (INTEGERLENGTH N))
,E))))

(BQUOTE (MASK.1’S , E 1))
else (BQUOTE

(EXPT (IPLUS 0 , (CAR X))
(IPLUS 0 , (CADR X)))))))))

)

200

3.14.4 Raw Data

Raw Time
FFT

Implementation CPU GC Real Paging
SAIL 4.00 2.91 9.38

Lambda 15.90 0.07
Lambda (MC) 13.90 0.23

3600 4.75 0.01
3600 + IFU 3.87 0.03
Dandelion 44.20 10.10
Dolphin 13.20 21.70
Dorado 1.57 3.03

S-1 1.44
PSL-SUN 139.12 27.89
PSL-20 35.44 10.76

PSL-3081 7.30 4.02
PSL-Cray
PSL-750 141.71 28.08

PSL-750 (VMS) 127.82 13.59
PSL-780 60.55 13.44

PSL-DN300
PSL-DN600
PSL-DN160
PSL-HP200 132.94 8.58
PSL-HP-UX 131.10 12.29

InterLispVax 780 22.79
MV4000 CL 159.10
MV8000 CL 124.73
MV10000 CL 62.78
3600 + FPA 3.87 0.03

750 NIL 35.59 38.17
8600 CL 9.08 15.65

§ 3.14 FFT 201

Raw Time
FFT

Implementation CPU GC Real Paging
780 CL 32.69 35.56
785 CL 24.40 29.00
750 CL 131.59 101.84
730 CL 293.46 240.56
Perq 89.00

750 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

780 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

Franz 68000
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

InterLisp-10 12.60 0.00
LM-2 39.07

202

This is not to say Franz’s compiler could not be

hacked to do fast arithmetic.

We offered to take money from <a company> and other

places to support a Franz numeric-compiler project.

They did not respond.

— Richard J. Fateman talking about the FFT benchmark. (July 7, 1982.)

203

3.15 Puzzle

3.15.1 The Program

;;; PUZZLE -- Forest Baskett’s Puzzle benchmark,
;;; originally written in Pascal.
(eval-when (compile load eval)
(defconstant size 511.)
(defconstant classmax 3.)
(defconstant typemax 12.))

(defvar *iii* 0)
(defvar *kount* 0)
(defvar *d* 8.)
(defvar piececount

(make-array (1+ classmax) :initial-element 0))
(defvar class

(make-array (1+ typemax) :initial-element 0))
(defvar piecemax

(make-array (1+ typemax) :initial-element 0))
(defvar puzzle (make-array (1+ size)))
(defvar p (make-array (list (1+ typemax) (1+ size))))
(defun fit (i j)
(let ((end (aref piecemax i)))
(do ((k 0 (1+ k)))

((> k end) t)
(cond ((aref p i k)

(cond ((aref puzzle (+ j k))
(return nil))))))))

204

(defun place (i j)
(let ((end (aref piecemax i)))
(do ((k 0 (1+ k)))

((> k end))
(cond ((aref p i k)

(setf (aref puzzle (+ j k)) t))))
(setf (aref piececount (aref class i))

(- (aref piececount (aref class i)) 1))
(do ((k j (1+ k)))

((> k size)
; (terpri)
; (princ "Puzzle filled")

0)
(cond ((not (aref puzzle k))

(return k))))))
(defun puzzle-remove (i j)
(let ((end (aref piecemax i)))
(do ((k 0 (1+ k)))

((> k end))
(cond ((aref p i k)

(setf (aref puzzle (+ j k)) nil))))
(setf (aref piececount (aref class i))

(+ (aref piececount (aref class i)) 1))))
(defun trial (j)
(let ((k 0))
(do ((i 0 (1+ i)))

((> i typemax) (setq *kount* (1+ *kount*)) nil)
(cond
((not
(= (aref piececount (aref class i)) 0))
(cond
((fit i j)
(setq k (place i j))
(cond
((or (trial k)

(= k 0))
; (format
; t
; "~%Piece ~4D at ~4D." (+ i 1) (+ k 1))

(setq *kount* (+ *kount* 1))
(return t))
(t (puzzle-remove i j))))))))))

§ 3.15 Puzzle 205

(defun definepiece (iclass ii jj kk)
(let ((index 0))
(do ((i 0 (1+ i)))

((> i ii))
(do ((j 0 (1+ j)))

((> j jj))
(do ((k 0 (1+ k)))

((> k kk))
(setq index (+ i (* *d* (+ j (* *d* k)))))
(setf (aref p *iii* index) t))))

(setf (aref class *iii*) iclass)
(setf (aref piecemax *iii*) index)
(cond ((not (= *iii* typemax))

(setq *iii* (+ *iii* 1))))))
(defun start ()
(do ((m 0 (1+ m)))

((> m size))
(setf (aref puzzle m) t))

(do ((i 1 (1+ i)))
((> i 5))

(do ((j 1 (1+ j)))
((> j 5))

(do ((k 1 (1+ k)))
((> k 5))

(setf
(aref puzzle (+ i (* *d* (+ j (* *d* k)))))
nil))))

(do ((i 0 (1+ i)))
((> i typemax))

(do ((m 0 (1+ m)))
((> m size))

(setf (aref p i m) nil)))
(setq *iii* 0)
(definePiece 0 3 1 0)
(definePiece 0 1 0 3)
(definePiece 0 0 3 1)
(definePiece 0 1 3 0)
(definePiece 0 3 0 1)
(definePiece 0 0 1 3)
(definePiece 1 2 0 0)
(definePiece 1 0 2 0)
(definePiece 1 0 0 2)
(definePiece 2 1 1 0)

206

(definePiece 2 1 0 1)
(definePiece 2 0 1 1)
(definePiece 3 1 1 1)
(setf (aref pieceCount 0) 13.)
(setf (aref pieceCount 1) 3)
(setf (aref pieceCount 2) 1)
(setf (aref pieceCount 3) 1)
(let ((m (+ 1 (* *d* (+ 1 *d*))))

(n 0)(*kount* 0))
(cond ((fit 0 m) (setq n (place 0 m)))

(t (format t "~%Error.")))
(cond ((trial n)

(format t "~%Success in ~4D trials." *kount*))
(t (format t "~%Failure.")))))

;;; call: (start)

3.15.2 Analysis

Puzzle is a benchmark written by Forest Baskett. It solves a search problem
that is a block-packing puzzle invented by John Conway. Given a 5x5x5 cube and
some pieces of various sizes, find a packing of those pieces into the cube. There
are four types of pieces: a) 13 4x2x1 pieces, b) 3 3x1x1 pieces, c) 1 2x2x1 piece,
and d) 1 2x2x2 piece.

In Conway’s original conception of the puzzle, there is an insight that allows
it to be solved easily by hand; without this insight, it is fairly difficult. Solutions
only exist for two positions of the small 2x2x2 cube, and once this cube is placed,
the 2x2x1 piece is uniquely placed.

The puzzle benchmark program does not take advantage of these insights,
but it does place one of the 4x2x1 pieces in the corner at the outset. There are
eight corners in the 5x5x5 cube and only five other pieces, so three 4x2x1 pieces
occupy corner positions.

There are five arrays used by the benchmark. PUZZLE is a one-dimensional
array that represents the 5x5x5 cube. This one-dimensional array is used rather
than a three-dimensional array, and the three-dimensional to one-dimensional ar-
ray indexing arithmetic is performed explicitly.

P is a two-dimensional array that stores the piece patterns. The first di-
mension represents pieces, and the second dimension locates filled-in parts of the

§ 3.15 Puzzle 207

piece. Suppose we want to place piece i in PUZZLE at point j. Then for 0kl(i)
if (P i k) contains TRUE, then (PUZZLE (+ j k)) is filled in. l(i) is a maximum
index for the second component of P for each piece, and this is a function of i.
The one-dimensional array PIECEMAX represents that function.

The type of piece that is stored in (P i ∗) is stored in the one-dimensional
array CLASS. And the number of pieces of type i is stored in the one-dimensional
array PIECECOUNT. (PIECECOUNT i) is the number of pieces of type i left to
fit.

The basic strategy is to do a depth-first search by placing a piece in PUZZLE
and trying to solve the subproblem of filling the rest of PUZZLE with the rest of
the pieces. To backtrack, the pieces are removed from PUZZLE using the inverse
operation to placing the piece.

The various functions in the benchmark will now be explained. FIT takes a
piece and an origin in PUZZLE, and it returns TRUE if and only if the piece can
be placed at that point in PUZZLE.

PLACE places a piece at a certain point in PUZZLE. If PUZZLE is not filled
after that piece has been placed, then PLACE returns the first empty index into
PUZZLE; if PUZZLE is filled, then PLACE returns 0. PIECECOUNT is updated
by this function.

REMOVE is the inverse of PLACE.

TRIAL is the main search routine. It takes an index in PUZZLE and tries
to complete the puzzle by starting at that index. It finds the first available piece
type and tries to fit a piece of that piece at the index supplied. If the piece FIT’s,
it is PLACE’d, and TRIAL is called recursively to complete the puzzle using the
index returned by PLACE as the starting point.

If the puzzle cannot be completed with the recursive call, then the piece is
REMOVE’d and the next piece is tried. If the piece did not FIT, the next piece
is tried.

In P, all of the symmetries of the pieces are explicitly stored, so no computa-
tion is needed to rotate pieces; the rotations are stored explicitly.

208

During the search, the first eight pieces placed are placed correctly. After
that, the search tree becomes quite bushy, attaining a maximum average branching
factor of 5 at depth 10 and declining after that. The tree that is actually searched
has 977 leaves and 2005 nodes. A solution is found at depth 18.

Meter for Puzzle
>’s 824530
1+’s 795877

References to (p i j) 759987
References to (puzzle x) 75253
References to (class x) 33901

References to (piececount (class x)) 29909
=’s 27918

Stores into (puzzle x) 24102
References to (piecemax x) 19331

FIT 15339
Stores into (p i j) 6733

Stores into (piececount (class x)) 3992
Return’s 2021
TRIAL 2005
PLACE 2005

REMOVE 1987
Stores into (piecemax x) 13

Stores into (class x) 13
DEFINEPIECE 13

Total 2624929

§ 3.15 Puzzle 209

3.15.3 Translation Notes

The INTERLISP version uses the Common Lisp array package as well. 16ASET
and 16AREF, which manipulate 16-bit byte arrays, do not error-check.

(RPAQQ PUZZLECOMS
((FILES (SYSLOAD FROM <RPG>)
CMLARRAY)
(CONSTANTS SIZE TYPEMAX D CLASSMAX)
(FNS FIT PLACE REMOVE! TRIAL DEFINEPIECE
START FRESHPUZZLES)
(BLOCKS
(PUZZLEBLOCK
FIT PLACE REMOVE! TRIAL DEFINEPIECE START FRESHPUZZLES

(SPECVARS KOUNT)
(ENTRIES
START FRESHPUZZLES)))
(MACROS CLASS PIECEMAX PUZZLE P PIECECOUNT)
(INITVARS (CLASS NIL)

(PIECEMAX NIL)
(PUZZLE NIL)
(P NIL)
(PIECECOUNT NIL)
(PUZZLETRACEFLG NIL))

(GLOBALVARS CLASS PIECEMAX PUZZLE P PIECECOUNT III PUZZLETRACEFLG)
(SPECVARS KOUNT)
(P (FRESHPUZZLES))))

(RPAQQ SIZE 511)
(RPAQQ TYPEMAX 12)
(RPAQQ D 8)
(RPAQQ CLASSMAX 3)

210

(CONSTANTS SIZE TYPEMAX D CLASSMAX))
(DEFINEQ
(FIT
(LAMBDA (I J)
(NOT
(find K from 0 to (PIECEMAX I)
suchthat
(AND (P I K)

(PUZZLE (IPLUS J K)))))))
(PLACE
(LAMBDA (I J)
(for K from 0 to (PIECEMAX I) do

(if (P I K)
then (PASET T PUZZLE (IPLUS J K))))

(16ASET (SUB1 (PIECECOUNT (CLASS I)))
PIECECOUNT
(CLASS I))

(OR (find K from J to SIZE suchthat (NOT (PUZZLE K)))
0)))

(REMOVE!
(LAMBDA (I J)
(for K from 0 to (PIECEMAX I) do

(if (P I K)
then (PASET NIL PUZZLE (IPLUS J K))))

(16ASET (ADD1 (PIECECOUNT (CLASS I)))
PIECECOUNT
(CLASS I))))

§ 3.15 Puzzle 211

(TRIAL
(LAMBDA (J)
(bind (K 0) for I from 0 to TYPEMAX

do (if (AND (NEQ 0 (PIECECOUNT (CLASS I)))
(FIT I J))

then
(SETQ K (PLACE I J))
(if (OR (TRIAL K)

(ZEROP K))
then
(AND PUZZLETRACEFLG

(printout
NIL
T
"Piece" .TAB "at" .TAB (ADD1 K)))

(add KOUNT 1)
(RETURN T)
else (REMOVE! I J)))

finally (PROGN (add KOUNT 1)
NIL))))

(DEFINEPIECE
(LAMBDA (ICLASS II JJ KK)
(PROG ((INDEX 0))
(for I from 0 to II
do (for J from 0 to JJ

do (for K from 0 to KK
do (SETQ

INDEX
(IPLUS I

(ITIMES D
(IPLUS J

(ITIMES D K)))))
(PASET T P III INDEX))))

(16ASET ICLASS CLASS III)
(16ASET INDEX PIECEMAX III)
(if (NEQ III TYPEMAX)

then (add III 1)))))

212

(START
(LAMBDA NIL
(for M from 0 to SIZE do (PASET T PUZZLE M))
(for I from 1 to 5 do
(for J from 1 to 5
do (for K from 1 to 5

do (PASET
NIL
PUZZLE
(IPLUS
I
(ITIMES
D
(IPLUS
J
(ITIMES D K)))))))

)
(for I from 0 to TYPEMAX
do (for M from 0 to SIZE

do (PASET NIL P I M)))
(SETQ III 0)
(DEFINEPIECE 0 3 1 0)
(DEFINEPIECE 0 1 0 3)
(DEFINEPIECE 0 0 3 1)
(DEFINEPIECE 0 1 3 0)
(DEFINEPIECE 0 3 0 1)
(DEFINEPIECE 0 0 1 3)
(DEFINEPIECE 1 2 0 0)
(DEFINEPIECE 1 0 2 0)
(DEFINEPIECE 1 0 0 2)
(DEFINEPIECE 2 1 1 0)
(DEFINEPIECE 2 1 0 1)
(DEFINEPIECE 2 0 1 1)
(DEFINEPIECE 3 1 1 1)
(16ASET 13 PIECECOUNT 0)
(16ASET 3 PIECECOUNT 1)
(16ASET 1 PIECECOUNT 2)
(16ASET 1 PIECECOUNT 3)
(PROG ((M (IPLUS 1 (ITIMES D (IPLUS 1 D))))

(N 0)
(KOUNT 0))
(if (FIT 0 M)

then (SETQ N (PLACE 0 M))
else (printout NIL T "Error"))

(if (TRIAL N)
then (printout NIL T "Success in " KOUNT " trials.")

else (printout NIL T "Failure."))
(TERPRI))))

§ 3.15 Puzzle 213

(FRESHPUZZLES
(LAMBDA NIL
(SETQ CLASS (MAKEARRAY (ADD1 TYPEMAX)

(QUOTE ELEMENTTYPE)
(QUOTE (MOD 65536))))

(SETQ PIECEMAX (MAKEARRAY (ADD1 TYPEMAX)
(QUOTE ELEMENTTYPE)
(QUOTE (MOD 65536))))

(SETQ PUZZLE (MAKEARRAY (IPLUS SIZE 2)))
(SETQ P (MAKEARRAY (LIST (ADD1 TYPEMAX)

(IPLUS SIZE 2))))
(SETQ PIECECOUNT (MAKEARRAY (IPLUS CLASSMAX 2)

(QUOTE ELEMENTTYPE)
(QUOTE (MOD 65536))))

NIL))
)
(DECLARE: EVAL@COMPILE
(PUTPROPS CLASS MACRO ((I . REST)
(16AREF CLASS I . REST)))

(PUTPROPS PIECEMAX MACRO ((I . REST)
(16AREF PIECEMAX I . REST)))

(PUTPROPS PUZZLE MACRO ((I . REST)
(PAREF PUZZLE I . REST)))

(PUTPROPS P MACRO ((I . REST)
(PAREF P I . REST)))

(PUTPROPS PIECECOUNT MACRO ((I . REST)
(16AREF PIECECOUNT I . REST)))

)
(RPAQ? CLASS NIL)
(RPAQ? PIECEMAX NIL)
(RPAQ? PUZZLE NIL)
(RPAQ? P NIL)
(RPAQ? PIECECOUNT NIL)
(RPAQ? PUZZLETRACEFLG NIL)
(DECLARE: DOEVAL@COMPILE DONTCOPY

(ADDTOVAR GLOBALVARS CLASS PIECEMAX PUZZLE P PIECECOUNT
III PUZZLETRACEFLG)

)
(DECLARE: DOEVAL@COMPILE DONTCOPY
(SPECVARS KOUNT)
)
(FRESHPUZZLES)

214

3.15.4 Raw Data

Raw Time
Puzzle

Implementation CPU GC Real Paging
SAIL 7.87 0.00 11.83

Lambda 28.80 0.50
Lambda (MC) 24.20 0.15

3600 13.89 0.00
3600 + IFU 11.04 0.04
Dandelion 50.20 0.00
Dolphin 91.00 0.00
Dorado 14.00 0.00

S-1 1.82
PSL-SUN 26.29 0.00
PSL-20 15.92 0.00

PSL-3081 1.47 0.00
PSL-Cray 1.00 0.00
PSL-750 35.92 0.00

PSL-750 (VMS) 31.84 0.00
PSL-780 16.28 0.00

PSL-DN300 31.74 0.00
PSL-DN600 28.92 0.00
PSL-DN160 29.51 0.00
PSL-HP200 10.85 0.00
PSL-HP-UX 12.48 0.00

InterLispVax 780 110.28
MV4000 CL 390.60
MV8000 CL 310.00
MV10000 CL 138.20
3600 + FPA 11.04 0.04

750 NIL 497.85 498.02
8600 CL 15.53 0.00

§ 3.15 Puzzle 215

Raw Time
Puzzle

Implementation CPU GC Real Paging
780 CL 47.48 0.00
785 CL 29.60 0.00
750 CL 231.79 0.00
730 CL 512.56 0.00
Perq 75.80

750 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

780 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

Franz 68000
TrlOn & LclfYes 52.12 32.60
TrlOn & LclfNo 51.32 31.67
TrlOff & LclfYes 52.08 25.18
TrlOff & LclfNo 52.80 24.45

InterLisp-10 121.02 7.92
LM-2 42.93

216

Presumably this is because 2-dimensional array reference

is losing its lunch.

— Glenn Burke explaining why PUZZLE runs slowly. (August 5, 1983.)

217

3.16 Triangle

3.16.1 The Program

;;; TRIANG -- Board game benchmark.
(eval-when (compile load eval)
(defvar *board* (make-array 16. :initial-element 1))
(defvar *sequence* (make-array 14. :initial-element 0))
(defvar *a* (make-array 37. :initial-contents

’(1 2 4 3 5 6 1 3 6 2 5 4 11 12
13 7 8 4 4 7 11 8 12 13 6 10
15 9 14 13 13 14 15 9 10
6 6)))

(defvar *b* (make-array 37. :initial-contents
’(2 4 7 5 8 9 3 6 10 5 9 8
12 13 14 8 9 5 2 4 7 5 8
9 3 6 10 5 9 8 12 13 14
8 9 5 5)))

(defvar *c* (make-array 37. :initial-contents
’(4 7 11 8 12 13 6 10 15 9 14 13
13 14 15 9 10 6 1 2 4 3 5 6 1
3 6 2 5 4 11 12 13 7 8 4 4)))

(defvar *answer*)
(defvar *final*)
(setf (aref *board* 5) 0))

(defun last-position ()
(do ((i 1 (1+ i)))

((= i 16.) 0)
(if (= 1 (aref *board* i))

(return i))))

218

(defun try (i depth)
(cond ((= depth 14)

(let ((lp (last-position)))
(unless (member lp *final*)
(push lp *final*)))

(push
(cdr (map ’list #’quote *sequence*))
answer)

t)
((and (= 1 (aref *board* (aref *a* i)))

(= 1 (aref *board* (aref *b* i)))
(= 0 (aref *board* (aref *c* i))))

(setf (aref *board* (aref *a* i)) 0)
(setf (aref *board* (aref *b* i)) 0)
(setf (aref *board* (aref *c* i)) 1)
(setf (aref *sequence* depth) i)
(do ((j 0 (1+ j))

(depth (1+ depth)))
((or (= j 36.)

(try j depth)) ()))
(setf (aref *board* (aref *a* i)) 1)
(setf (aref *board* (aref *b* i)) 1)
(setf (aref *board* (aref *c* i)) 0) ())))

(defun gogogo (i)
(let ((*answer* ())

(*final* ()))
(try i 1)))

;;; call: (gogogo 22.))

3.16.2 Analysis

This program is similar in many respects to the Puzzle benchmark, but it
does not use any two-dimensional arrays. Therefore it provides a differentiator
between one-dimensional and two-dimensional array references.

The puzzle that this benchmark solves is this: Given a board that looks like

1
2 3

4 5 6
7 8 9 10

11 12 13 14 15

which is taken to have holes at each of the numbered spots, suppose that initially
every hole has a peg in it except for 5 and that pieces can be removed by ‘jumping’
as in checkers. Find all ways to remove all but one peg from the board.

§ 3.16 Triangle 219

There are 775 solutions to this puzzle, and they can easily be found by search.

There are five arrays in this program. ∗Board∗ is a one-dimensional array
that represents a board, where the array indices correspond to the picture above.
∗Sequence∗ is a one-dimensional array that is used to keep track of the moves made
to reach a solution. ∗A∗, ∗b∗, and ∗c∗ are one-dimensional arrays that store the
possible moves. The elements of ∗board∗ are either 0 or 1: 0 means that there is no
peg in that hole and 1 means there is. If ∗board∗[∗a∗[i]] = 1, ∗board∗[∗b∗[i]] = 1,
and ∗board∗[∗c∗[i]] = 0, then the peg at ∗a∗[i] can jump the peg at ∗b∗[i]
and end up at ∗c∗[i]. After this move has been made, ∗board∗[∗a∗[i]] = 0,
∗board∗[∗b∗[i]] = 0, and ∗board∗[∗c∗[i]] = 1; ∗sequence∗ stores the indices i

for each such move made.

After a solution is found, the elements of ∗sequence∗ are put into a list, and
the list of solutions is the final result. As in Puzzle, the search proceeds by altering
∗board∗ and by undoing those alterations in case of backtracking. In addition,
the first move to try is given (the peg in 12 jumps the peg in 8 and ends up in 5).

Meter for Last-Position
=’s 20150

References to (board x) 10075
1+’s 9300

LAST-POSITION 775
Total 40300

220

Meter for Try
=’s 19587224

References to (board x) 7820920
1+’s 5963732
TRY 5802572

Stores into (board x) 971616
Stores into (board (c x)) 323872
Stores into (board (b x)) 323872
Stores into (board (a x)) 323872
Stores into (sequence x) 161936

Listarray’s 1550
Cdr’s 1550
Cons’s 776

Member’s 775
Total 41284267

§ 3.16 Triangle 221

3.16.3 Translation Notes

The INTERLISP version uses the Common Lisp array package. 8ASET and
8AREF manipulate 8-bit byte arrays.

(RPAQQ TRIANGCOMS
((LOCALVARS . T)
(SPECVARS ANSWER FINAL DEEPCOUNTER)
(GLOBALVARS BOARD SEQUENCE A B C)
(FNS GOGOGO LAST-POSITION TRY TEST TRIANG-INIT)
(FILES (SYSLOAD FROM <RPG>) CMLARRAY NONDADDARITH)
(BLOCKS
(TRIANGBLOCK
GOGOGO LAST-POSITION TRY TEST TRIANG-INIT
(ENTRIES GOGOGO TRIANG-INIT)))

(P (TRIANG-INIT))))
(DECLARE: DOEVAL@COMPILE DONTCOPY
(LOCALVARS . T)
)
(DECLARE: DOEVAL@COMPILE DONTCOPY
(SPECVARS ANSWER FINAL DEEPCOUNTER)
)
(DECLARE: DOEVAL@COMPILE DONTCOPY
(ADDTOVAR GLOBALVARS BOARD SEQUENCE A B C)
)
(DEFINEQ
(GOGOGO
(LAMBDA (I)
(PROG ((ANSWER NIL)

(FINAL NIL))
(RETURN (TRY I 1)))))

222

(LAST-POSITION
(LAMBDA NIL
(OR (find I to 16 suchthat (EQ 1 (8AREF BOARD I)))

0)))
(TRY
(LAMBDA (I DEPTH)
(DECLARE (SPECVARS ANSWER FINAL)

(GLOBALVARS BOARD SEQUENCE A B C))
(COND
((EQ DEPTH 14)

(PROG ((LP (LAST-POSITION)))
(COND
((MEMBER LP FINAL))
(T (push FINAL LP))))

(push ANSWER (CDR (LISTARRAY SEQUENCE)))
T)

((AND (EQ 1 (8AREF BOARD (8AREF A I)))
(EQ 1 (8AREF BOARD (8AREF B I)))
(EQ 0 (8AREF BOARD (8AREF C I))))

(8ASET 0 BOARD (8AREF A I))
(8ASET 0 BOARD (8AREF B I))
(8ASET 1 BOARD (8AREF C I))
(8ASET I SEQUENCE DEPTH)
(bind (DEPTH (ADD1 DEPTH)) for J from 0 to 36
until (TRY J DEPTH) do NIL)
(8ASET 1 BOARD (8AREF A I))
(8ASET 1 BOARD (8AREF B I))
(8ASET 0 BOARD (8AREF C I))
NIL))))

(TEST
(LAMBDA NIL
(DECLARE (SPECVARS ANSWER FINAL)

(GLOBALVARS BOARD SEQUENCE A B C))
(TRIANG-INIT)
(PROG ((ANSWER NIL)

(FINAL NIL))
(TRY 22 1)
(RETURN (EQ 775 (LENGTH ANSWER))))))

§ 3.16 Triangle 223

(TRIANG-INIT
(LAMBDA NIL
(SETQ BOARD (MAKEARRAY 16 (QUOTE ELEMENTTYPE)

(QUOTE BYTE)
(QUOTE INITIALELEMENT)
1))

(ASET 0 BOARD 5)
(SETQ SEQUENCE (MAKEARRAY 14 (QUOTE ELEMENTTYPE)

(QUOTE BYTE)
(QUOTE INITIALELEMENT)
255))

(SETQ A
(MAKEARRAY 37 (QUOTE ELEMENTTYPE)

(QUOTE BYTE)
(QUOTE INITIALCONTENTS)
(QUOTE (1 2 4 3 5 6 1 3 6 2

5 4 11 12 13 7 8 4
4 7 11 8 12 13 6 10
15 9 14 13 13 14
15 9 10 6 0))))

(SETQ B
(MAKEARRAY 37 (QUOTE ELEMENTTYPE)

(QUOTE BYTE)
(QUOTE INITIALCONTENTS)
(QUOTE
(2 4 7 5 8 9 3 6 10 5 9 8
12 13 14 8 9 5 2 4 7 5 8 9 3
6 10 5 9 8 12 13 14 8
9 5 0))))

(SETQ C
(MAKEARRAY 37 (QUOTE ELEMENTTYPE)

(QUOTE BYTE)
(QUOTE INITIALCONTENTS)
(QUOTE (4 7 11 8 12 13 6 10 15

9 14 13 13 14 15 9 10
6 1 2 4 3 5 6 1 3 6 2 5
4 11 12 13 7 8 4 0))))))

)
(TRIANG-INIT)

224

3.16.4 Raw Data

Raw Time
Triang

Implementation CPU GC Real Paging
SAIL 86.03 6.35 144.90

Lambda 510.20 0.30
Lambda (MC) 225.50 0.00

3600 151.70 0.06
3600 + IFU 116.99 0.04
Dandelion 856.00 0.46
Dolphin 1510.00 0.70
Dorado 252.20 0.21

S-1 62.06
PSL-SUN 353.44 0.00
PSL-20 86.94 0.00

PSL-3081 25.43 0.00
PSL-Cray 14.44 0.00
PSL-750 523.19 0.00

PSL-750 (VMS) 439.51 0.00
PSL-780 212.19 0.00

PSL-DN300 439.90 0.00
PSL-DN600 416.47 0.00
PSL-DN160
PSL-HP200 261.07 0.00
PSL-HP-UX 250.07 0.00

InterLispVax 780 1076.53
MV4000 CL 456.37
MV8000 CL 384.03
MV10000 CL 151.20
3600 + FPA 116.99 0.04

750 NIL 649.73 652.35
8600 CL 99.73 0.00

§ 3.16 Triangle 225

Raw Time
Triang

Implementation CPU GC Real Paging
780 CL 360.85 0.00
785 CL 233.00 0.00
750 CL 1021.35 0.00
730 CL 2865.87 0.00
Perq 1297.53

750 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

780 Franz
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

Franz 68000
TrlOn & LclfYes
TrlOn & LclfNo
TrlOff & LclfYes
TrlOff & LclfNo

InterLisp-10 2326.43 1.12
LM-2 763.00

226

I also tried TRIANG,

but gave up after 10 (?) CPU minutes.

— Walter van Roggen explaining a need to

tune his implementation. (January 26, 1984.)

227

3.17 File Print

3.17.1 The Program

;;; FPRINT -- Benchmark to print to a file.
(defvar
test-atoms
’(abcdef12 cdefgh23 efghij34 ghijkl45 ijklmn56 klmnop67
mnopqr78 opqrst89 qrstuv90 stuvwx01 uvwxyz12
wxyzab23 xyzabc34 123456ab 234567bc 345678cd
456789de 567890ef 678901fg 789012gh 890123hi))

(defun init-aux (m n atoms)
(cond ((= m 0) (pop atoms))

(t (do ((i n (- i 2))
(a ()))

((< i 1) a)
(push (pop atoms) a)
(push (init-aux (1- m) n atoms) a)))))

(defun init (m n atoms)
(let ((atoms (subst () () atoms)))
(do ((a atoms (cdr a)))

((null (cdr a)) (rplacd a atoms)))
(init-aux m n atoms)))

(defvar test-pattern (init 6. 6. *test-atoms*))

(defun fprint ()
(if (probe-file "fprint.tst")

(delete-file "fprint.tst"))
;;; defaults to STRING-CHAR
(let ((stream (open

"fprint.tst"
:direction :output)))

(print test-pattern stream)
(close stream)))

(eval-when (compile load eval)
(if (probe-file "fprint.tst")

(delete-file "fprint.tst")))
;;; call: (fprint)

3.17.2 Analysis

This benchmark measures the performance of file output. The program checks
to see whether there is a file with a certain name (there should not be). Then it
creates and opens a new file with that name, prints a test pattern into that file,
and then closes it. The EVAL-WHEN guarantees that the file is not present when
the benchmark is run.

228

The test pattern is a tree that is 6-deep and that has a branching factor of 6.
The atoms in the tree have 8 characters each and are a mixture of alphabetic and
numeric characters. Printing the tree using PRINT requires 17,116 characters,
including spaces, to be output.

Meter for Init
Cons’s 2184

<’s 1456
Cdr’s 1133
=’s 1093

INIT1 1093
1−’s 1092
Car’s 1092
Null’s 21

Rplacd’s 1
Subst’s 1
INIT 1
Total 9167

3.17.3 Translation Notes

The translation of this benchmark is trivial: The meat of the program is
PRINT.

§ 3.17 File Print 229

3.17.4 Raw Data

Raw Time
Fprint

Implementation CPU GC Real Paging
SAIL 0.78 0.40 1.32

Lambda 16.58 11.20
Lambda (MC)

3600 2.60 0.10
3600 + IFU
Dandelion 13.70 0.40
Dolphin 14.90 0.00
Dorado 2.93 0.00

S-1
PSL-SUN 5.13 0.00
PSL-20 4.77 0.00

PSL-3081 0.34 0.00
PSL-Cray 0.37 0.00
PSL-750 5.33 0.00

PSL-750 (VMS) 3.90 0.00
PSL-780 2.19 0.00

PSL-DN300 4.19 0.00
PSL-DN600 4.43 0.00
PSL-DN160 1.89 0.00
PSL-HP200 9.37 0.00
PSL-HP-UX 3.40 0.00

InterLispVax 780 0.60
MV4000 CL 5.07
MV8000 CL 4.51
MV10000 CL 2.35
3600 + FPA 2.60 0.10

750 NIL 37.65 38.23
8600 CL 1.08 0.00

230

Raw Time
Fprint

Implementation CPU GC Real Paging
780 CL 3.94 0.00
785 CL 2.19 0.00
750 CL 6.08 0.00
730 CL 18.30 0.00
Perq 19.13

750 Franz
TrlOn & LclfYes 1.11 0.00
TrlOn & LclfNo 1.23 0.00
TrlOff & LclfYes 1.09 0.00
TrlOff & LclfNo 1.06 0.00

780 Franz
TrlOn & LclfYes 0.63 0.00
TrlOn & LclfNo 0.61 0.00
TrlOff & LclfYes 0.64 0.00
TrlOff & LclfNo 0.63 0.00

Franz 68000
TrlOn & LclfYes 1.93 0.00
TrlOn & LclfNo 1.90 0.00
TrlOff & LclfYes 1.92 0.00
TrlOff & LclfNo 1.94 0.00

InterLisp-10 4.45 0.00
LM-2 12.09

§ 3.17 File Print 231

. . . without the vigilance of your benchmarking activity,

this bug might have gone unnoticed

for years.

— Jonl White voicing praise. (February 8, 1984.)

232

3.18 File Read

3.18.1 The Program

;;; FREAD -- Benchmark to read from a file.
;;; Requires the existence of FPRINT.TST which is created
;;; by FPRINT.
(defun fread ()
(let ((stream (open "fprint.tst" :direction :input)))
(read stream)
(close stream)))

(eval-when (compile load eval)
(if (not (probe-file "fprint.tst"))

(format
t
"~%Define FPRINT.TST by running the FPRINT benchmark!")))

;;; call: (fread))

3.18.2 Analysis

This benchmark tests file input. It reads the file produced by FPRINT.

3.18.3 Translation Notes

The translation of this benchmark is trivial.

§ 3.18 File Read 233

3.18.4 Raw Data

Raw Time
Fread

Implementation CPU GC Real Paging
SAIL 0.98 0.00 1.80

Lambda 19.70 0.54
Lambda (MC)

3600 4.60 0.00
3600 + IFU
Dandelion 8.00 0.13
Dolphin 6.41 0.00
Dorado 1.57 0.00

S-1
PSL-SUN 7.70 0.00
PSL-20 5.82 0.00

PSL-3081 0.40 0.00
PSL-Cray 0.63 0.00
PSL-750 7.54 0.00

PSL-750 (VMS) 6.20 0.00
PSL-780 3.36 0.00

PSL-DN300 6.47 0.00
PSL-DN600 6.82 0.00
PSL-DN160 3.09 0.00
PSL-HP200 5.16 0.00
PSL-HP-UX 5.02 0.00

InterLispVax 780 0.12
MV4000 CL 10.28
MV8000 CL 8.91
MV10000 CL 4.64
3600 + FPA 4.60 0.00

750 NIL 27.78 28.02
8600 CL 2.34 0.00

234

Raw Time
Fread

Implementation CPU GC Real Paging
780 CL 7.24 0.00
785 CL 2.56 0.00
750 CL 11.21 0.00
730 CL 29.83 0.00
Perq 20.60

750 Franz
TrlOn & LclfYes 1.99 0.33
TrlOn & LclfNo 2.02 0.32
TrlOff & LclfYes 2.05 0.33
TrlOff & LclfNo 2.04 0.35

780 Franz
TrlOn & LclfYes 1.18 0.19
TrlOn & LclfNo 1.17 0.30
TrlOff & LclfYes 1.18 0.19
TrlOff & LclfNo 1.17 0.19

Franz 68000
TrlOn & LclfYes 2.37 0.89
TrlOn & LclfNo 2.37 0.88
TrlOff & LclfYes 2.35 0.56
TrlOff & LclfNo 2.35 0.54

InterLisp-10 4.47 0.00
LM-2 20.67

§ 3.18 File Read 235

. . .we re-ran the benchmarks in the current release of the software,

in which some things were made faster

(and one thing accidentally got slower).

— Daniel Weinrebexplaining results. (September 12, 1984.)

236

3.19 Terminal Print

3.19.1 The Program

;;; TPRINT -- Benchmark to print and read to the terminal.
(defvar
test-atoms
’(abc1 cde2 efg3 ghi4 ijk5 klm6 mno7 opq8 qrs9
stu0 uvw1 wxy2 xyz3 123a 234b 345c 456d
567d 678e 789f 890g))

(defun init (m n atoms)
(let ((atoms (subst () () atoms)))
(do ((a atoms (cdr a)))

((null (cdr a)) (rplacd a atoms)))
(init-aux m n atoms)))

(defun init-aux (m n atoms)
(cond ((= m 0) (pop atoms))

(t (do ((i n (- i 2))
(a ()))

((< i 1) a)
(push (pop atoms) a)
(push (init-aux (1- m) n atoms) a)))))

(defvar test-pattern (init 6. 6. *test-atoms*))
;;; call: (print test-pattern)

3.19.2 Analysis

This benchmark tests terminal output. On the Xerox D-machines, the output
is to a 10”x10” window.

Meter for Init
Cons’s 2184

<’s 1456
Cdr’s 1133
=’s 1093

INIT1 1093
1−’s 1092
Car’s 1092
Null’s 21

Rplacd’s 1
Subst’s 1
INIT 1
Total 9167

§ 3.19 Terminal Print 237

3.19.3 Translation Notes

The translation of this benchmark is trivial.

3.19.4 Raw Data

Raw Time
Tprint

Implementation CPU GC Real Paging
SAIL 0.81 0.00 6.52

Lambda 7.20 0.61
Lambda (MC)

3600 4.89 0.00
3600 + IFU
Dandelion 34.00 0.00
Dolphin 29.20 0.00
Dorado 5.55 0.00

S-1
PSL-SUN 3.58 0.00
PSL-20 4.25 0.00

PSL-3081 0.30 0.00
PSL-Cray 0.20 0.00
PSL-750 4.27 0.00

PSL-750 (VMS) 2.63 0.00
PSL-780 1.92 0.00

PSL-DN300 2.72 0.00
PSL-DN600 2.73 0.00
PSL-DN160 1.84 0.00
PSL-HP200 11.19 0.00
PSL-HP-UX 7.82 0.00

InterLispVax 780 11.47
MV4000 CL 5.55
MV8000 CL 4.94
MV10000 CL 2.83
3600 + FPA 4.89 0.00

750 NIL 47.55 58.31
8600 CL 0.70 0.00

238

Raw Time
Tprint

Implementation CPU GC Real Paging
780 CL 2.85 0.00
785 CL 1.43 0.00
750 CL 4.11 0.00
730 CL 12.56 0.00
Perq 15.55

750 Franz
TrlOn & LclfYes 0.88 0.00
TrlOn & LclfNo 0.87 0.00
TrlOff & LclfYes 0.87 0.00
TrlOff & LclfNo 0.87 0.00

780 Franz
TrlOn & LclfYes 0.53 0.00
TrlOn & LclfNo 0.52 0.00
TrlOff & LclfYes 0.48 0.00
TrlOff & LclfNo 0.52 0.00

Franz 68000
TrlOn & LclfYes 3.22 0.00
TrlOn & LclfNo 2.12 0.00
TrlOff & LclfYes 3.15 0.00
TrlOff & LclfNo 2.55 0.00

InterLisp-10 4.72 0.00
LM-2 17.67

§ 3.19 Terminal Print 239

I asked Moon, and he said it was complicated

and he didn’t know the whole story.

— Daniel Weinrebreflecting on the 3600’s instruction cache. (September 13, 1984.)

240

3.20 Polynomial Manipulation

3.20.1 The Program

;;; FRPOLY -- Benchmark from Berkeley based on polynomial
;;; arithmetic. Originally writen in Franz Lisp by Richard
;;; Fateman. PDIFFER1 appears in the code but is not defined;
;;; is not called for in this test, however.
(defvar ans)
(defvar coef)
(defvar f)
(defvar inc)
(defvar i)
(defvar qq)
(defvar ss)
(defvar v)
(defvar *x*)
(defvar *alpha*)
(defvar *a*)
(defvar *b*)
(defvar *chk)
(defvar *l)
(defvar *p)
(defvar q*)
(defvar u*)
(defvar *var)
(defvar *y*)
(defvar r)
(defvar r2)
(defvar r3)
(defvar start)
(defvar res1)
(defvar res2)
(defvar res3)

§ 3.20 Polynomial Manipulation 241

(defmacro pointergp (x y) ‘(> (get ,x ’order)
(get ,y ’order)))

(defmacro pcoefp (e) ‘(atom ,e))
(defmacro pzerop (x)
‘(if (numberp ,x)

(zerop ,x)))
(defmacro pzero () 0)
(defmacro cplus (x y) ‘(+ ,x ,y))
(defmacro ctimes (x y) ‘(* ,x ,y))
(defun pcoefadd (e c x)
(if (pzerop c)

x
(cons e (cons c x))))

(defun pcplus (c p)
(if (pcoefp p)

(cplus p c)
(psimp (car p) (pcplus1 c (cdr p)))))

(defun pcplus1 (c x)
(cond ((null x)

(if (pzerop c)
nil
(cons 0 (cons c nil))))

((pzerop (car x))
(pcoefadd 0 (pplus c (cadr x)) nil))
(t
(cons
(car x)
(cons
(cadr x)
(pcplus1 c (cddr x)))))))

(defun pctimes (c p)
(if (pcoefp p)

(ctimes c p)
(psimp (car p) (pctimes1 c (cdr p)))))

(defun pctimes1 (c x)
(if (null x)

nil
(pcoefadd (car x)

(ptimes c (cadr x))
(pctimes1 c (cddr x)))))

242

(defun pplus (x y)
(cond ((pcoefp x)

(pcplus x y))
((pcoefp y)
(pcplus y x))
((eq (car x) (car y))
(psimp (car x) (pplus1 (cdr y) (cdr x))))
((pointergp (car x) (car y))
(psimp (car x) (pcplus1 y (cdr x))))
(t
(psimp (car y) (pcplus1 x (cdr y))))))

(defun pplus1 (x y)
(cond ((null x) y)

((null y) x)
((= (car x) (car y))
(pcoefadd (car x)

(pplus (cadr x) (cadr y))
(pplus1 (cddr x) (cddr y))))

((> (car x) (car y))
(cons
(car x)
(cons (cadr x) (pplus1 (cddr x) y))))

(t
(cons
(car y)
(cons (cadr y) (pplus1 x (cddr y)))))))

(defun psimp (var x)
(cond ((null x) 0)

((atom x) x)
((zerop (car x))
(cadr x))
(t
(cons var x))))

§ 3.20 Polynomial Manipulation 243

(defun ptimes (x y)
(cond ((or (pzerop x) (pzerop y))

(pzero))
((pcoefp x)
(pctimes x y))
((pcoefp y)
(pctimes y x))
((eq (car x) (car y))
(psimp (car x) (ptimes1 (cdr x) (cdr y))))
((pointergp (car x) (car y))
(psimp (car x) (pctimes1 y (cdr x))))
(t
(psimp (car y) (pctimes1 x (cdr y))))))

(defun ptimes1 (*x* y)
(prog (u* v)

(setq v (setq u* (ptimes2 y)))
a

(setq *x* (cddr *x*))
(if (null *x*)

(return u*))
(ptimes3 y)
(go a)))

(defun ptimes2 (y)
(if (null y)

nil
(pcoefadd (+ (car *x*) (car y))

(ptimes (cadr *x*) (cadr y))
(ptimes2 (cddr y)))))

244

(defun ptimes3 (y)
(prog (e u c)

a1 (if (null y)
(return nil))

(setq e (+ (car *x*) (car y))
c (ptimes (cadr y) (cadr *x*)))

(cond ((pzerop c)
(setq y (cddr y))
(go a1))
((or (null v) (> e (car v)))
(setq u* (setq v (pplus1 u* (list e c))))
(setq y (cddr y))
(go a1))
((= e (car v))
(setq c (pplus c (cadr v)))
(if (pzerop c) ; never true, evidently

(setq
u*
(setq
v
(pdiffer1
u*
(list (car v) (cadr v)))))

(rplaca (cdr v) c))
(setq y (cddr y))
(go a1)))

a (cond ((and (cddr v) (> (caddr v) e))
(setq v (cddr v))
(go a)))

(setq u (cdr v))
b (if (or (null (cdr u)) (< (cadr u) e))

(rplacd u (cons e (cons c (cdr u)))) (go e))
(cond ((pzerop (setq c (pplus (caddr u) c)))

(rplacd u (cdddr u))
(go d))
(t
(rplaca (cddr u) c)))

e (setq u (cddr u))
d (setq y (cddr y))

(if (null y)
(return nil))

(setq e (+ (car *x*) (car y))
c (ptimes (cadr y) (cadr *x*)))

c (cond ((and (cdr u) (> (cadr u) e))
(setq u (cddr u))
(go c)))

(go b)))

§ 3.20 Polynomial Manipulation 245

(defun pexptsq (p n)
(do ((n (floor n 2) (floor n 2))

(s (if (oddp n) p 1)))
((zerop n) s)

(setq p (ptimes p p))
(and (oddp n) (setq s (ptimes s p)))))

(eval-when (compile load eval)
(setf (get ’x ’order) 1)
(setf (get ’y ’order) 2)
(setf (get ’z ’order) 3)
(setq
r
(pplus
’(x 1 1 0 1)
(pplus ’(y 1 1) ’(z 1 1))) ; r= x+y+z+1

r2
(ptimes r 100000) ; r2 = 100000*r
r3
(ptimes r 1.0))) ; r3 = r

; with floating point
; coefficients

;;; four sets of three tests, call:
;;; (pexptsq r 2) (pexptsq r2 2) (pexptsq r3 2)
;;; (pexptsq r 5) (pexptsq r2 5) (pexptsq r3 5)
;;; (pexptsq r 10) (pexptsq r2 10) (pexptsq r3 10)
;;; (pexptsq r 15) (pexptsq r2 15) (pexptsq r3 15)

3.20.2 Analysis

This program, which was supplied by Richard Fateman of the University of
California, Berkeley, computes powers of particular polynomials. There are fours
sets of three tests: The first squares the polynomials x + y + z + 1, 100000x +
100000y+100000z +100000, and 1.0x+1.0y+1.0z +1.0; the second takes the 5th
power of those three polynomials; the third takes the 10th power of those three
polynomials; and the fourth takes the 15th power of those three polynomials.

The polynomial 100000(x+y+z+1) requires BIGNUMs for the higher powers,
and 1.0(x + y + z + 1) requires floating-point numbers. Not all implementations
can handle BIGNUMs, and so this benchmark is not performed on all of the
implementations in this study.

This benchmark is a good one because it uses an interesting representation for
polynomials in several variables and because it is programmed in an unusual and
somewhat unpleasant programming style. Polynomials are represented as lists.

246

The variables in the polynomial are given an arbitrary, but fixed, total order.
This identifies a main variable. If that variable is x, then the list

(x e1 c1 . . . en cn)

represents the polynomial

c1xe1
+ . . . + cnxen

The coefficients, ci, are allowed to be polynomials in ‘less main’ variables.
For example, the polynomial

x2 + 2xy + y2 + 7

is represented as

(x 2 1 1 (y 1 2) 0 (y 2 1 0 7))

Using the above formula to decode this we have

1x2 + (2y)x1 + (1y2 + 7y0)x0 = x2 + 2xy + y2 + 7

With the total ordering on variables and with the assumption that e1 > . . . >

en, it is possible to uniquely represent polynomials.

The total order is kept as entries on the property lists of the symbols that
represent the variables, and the main variable is the one whose ORDER property
is numerically the lowest.

Implementing addition, multiplication, and exponentiation of polynomials
represented this way is theoretically simple but practically unpleasant. The main
routine used in multiplying polynomials is written as a tangled web of GO’s. This
program side-effects a special variable to accomplish its task.

In another routine in the multiplication package, a special variable is bound
in the argument list. Both fixnum and generic arithmetic are performed.

In order to manipulate the polynomial representation, destructive list opera-
tions are performed along with a fair amount of CONSing.

§ 3.20 Polynomial Manipulation 247

Meter for Setup
Car’s 98

Signp’s 94
Atom’s 72
Null’s 66
Cons’s 54
Cdr’s 48

PCTIMES1 36
PTIMES 28

PCTIMES 28
PCOEFADD 26

Zerop’s 18
PSIMP 18
∗’s 16

Get’s 12
PCPLUS 12
Putprop’s 6

Eq’s 6
PPLUS 6
Oddp’s 0

/’s 0
PEXPTSQ 0
Rplacd’s 0

<’s 0
Rplaca’s 0

PTIMES3 0
PTIMES2 0
PTIMES1 0

>’s 0
=’s 0

PPLUS1 0
+’s 0

Total 644

248

Meter for (Bench 2)
Signp’s 381
Car’s 369
Cdr’s 324
Null’s 315
Atom’s 300
Cons’s 180

PTIMES 123
PCTIMES1 117
PCOEFADD 117
PCTIMES 114
∗’s 78

Zerop’s 60
PSIMP 54

+’s 36
PTIMES2 27

=’s 27
PPLUS1 27
PPLUS 27

>’s 18
Eq’s 18

PCPLUS 18
Rplacds 9

<’s 9
Rplaca’s 9

PTIMES3 9
PTIMES1 9
Oddp’s 6

/’s 6
PEXPTSQ 3
Putprop’s 0

Get’s 0
Total 2790

Meter for (Bench 5)
Car’s 4413
Cdr’s 4257

Signp’s 3516
Null’s 3501
Atom’s 3294
Cons’s 1656

PCOEFADD 1110
PTIMES 1038

PCTIMES 942
∗’s 768
+’s 714

PCTIMES1 624
PPLUS 609
PPLUS1 555

=’s 543
PCPLUS 465
Zerop’s 423
PSIMP 414

>’s 366
PTIMES2 345

Eq’s 240
<’s 198

Rplaca’s 198
Rplacd’s 132

PTIMES3 132
PTIMES1 96
Oddp’s 9

/’s 9
PEXPTSQ 3
Putprop’s 0

Get’s 0
Total 30570

§ 3.20 Polynomial Manipulation 249

Meter for (Bench 10)
Cdr’s 50682
Car’s 46686

Atom’s 38700
Signp’s 37161
Null’s 36909
Cons’s 15285

PCOEFADD 10968
PTIMES 10641

+’s 10239
PCTIMES 9864
∗’s 9003

PPLUS 8709
PCPLUS 7485

=’s 6708
PPLUS1 6477

>’s 5589
PCTIMES1 3822
PTIMES2 3531

<’s 3456
Rplaca’s 3456
Zerop’s 2874
PSIMP 2862
Eq’s 2001

Rplacd’s 1455
PTIMES3 1455
PTIMES1 777
Oddp’s 12

/’s 12
PEXPTSQ 3
Putprop’s 0

Get’s 0
Total 336822

Meter for (Bench 15)
Cdr’s 384381
Car’s 293511

Atom’s 278784
Signp’s 247089
Null’s 242352
Cons’s 79140

+’s 78024
PTIMES 71817

PCTIMES 67983
PPLUS 67575
∗’s 65643

PCPLUS 62145
PCOEFADD 56466

>’s 54225
=’s 42726

PPLUS1 37086
<’s 35919

Rplaca’s 35919
PTIMES2 19713
Zerop’s 11616
PSIMP 11604

PCTIMES1 11271
Rplacd’s 11070

PTIMES3 11070
Eq’s 9264

PTIMES1 3834
Oddp’s 12

/’s 12
PEXPTSQ 3
Putprop’s 0

Get’s 0
Total 2290254

250

3.20.3 Raw Data

Raw Time
Frpoly Power = 2 r = x + y + z + 1

Implementation CPU GC Real Paging
SAIL 0.00 0.00 0.02

Lambda 0.00 0.00
Lambda (MC) 0.00 0.00

3600 0.00 0.00
3600 + IFU 0.00 0.00
Dandelion
Dolphin
Dorado

S-1 0.00
PSL-SUN 0.03 0.00
PSL-20 0.02 0.00

PSL-3081 0.00 0.00
PSL-Cray 0.00 0.00
PSL-750 0.06 0.00

PSL-750 (VMS) 0.07 0.00
PSL-780 0.00 0.00

PSL-DN300 0.40 0.00
PSL-DN600 0.35 0.00
PSL-DN160
PSL-HP200 0.07 0.00
PSL-HP-UX 0.06 0.00

InterLispVax 780
MV4000 CL 0.04
MV8000 CL 0.04
MV10000 CL 0.01
3600 + FPA 0.00 0.00

750 NIL 0.04 0.00
8600 CL 0.01 0.00

§ 3.20 Polynomial Manipulation 251

Raw Time
Frpoly Power = 2 r = x + y + z + 1

Implementation CPU GC Real Paging
780 CL 0.03 0.00
785 CL 0.02 0.00
750 CL 0.06 0.00
730 CL 0.17 0.00
Perq

750 Franz
TrlOn & LclfYes 0.03 0.00
TrlOn & LclfNo 0.05 0.00
TrlOff & LclfYes 0.03 0.00
TrlOff & LclfNo 0.08 0.00

780 Franz
TrlOn & LclfYes 0.02 0.00
TrlOn & LclfNo 0.02 0.00
TrlOff & LclfYes 0.02 0.00
TrlOff & LclfNo 0.05 0.00

Franz 68000
TrlOn & LclfYes 0.02 0.00
TrlOn & LclfNo 0.05 0.00
TrlOff & LclfYes 0.03 0.00
TrlOff & LclfNo 0.10 0.00

InterLisp-10
LM-2

252

Raw Time
Frpoly Power = 2 r2 = 1000r

Implementation CPU GC Real Paging
SAIL 0.00 0.00 0.02

Lambda 0.01 0.00
Lambda (MC) 0.00 0.00

3600 0.00 0.00
3600 + IFU 0.00 0.00
Dandelion
Dolphin
Dorado

S-1 0.00
PSL-SUN 0.20 0.00
PSL-20 0.03 0.00

PSL-3081 0.01 0.00
PSL-Cray 0.00 0.00
PSL-750 0.28 0.00

PSL-750 (VMS) 0.16 0.00
PSL-780 0.06 0.00

PSL-DN300 0.13 0.00
PSL-DN600 0.14 0.00
PSL-DN160
PSL-HP200 0.15 0.00
PSL-HP-UX 0.15 0.00

InterLispVax 780
MV4000 CL 0.05
MV8000 CL 0.05
MV10000 CL 0.02
3600 + FPA 0.00 0.00

750 NIL 0.15 0.15
8600 CL 0.01 0.00

§ 3.20 Polynomial Manipulation 253

Raw Time
Frpoly Power = 2 r2 = 1000r

Implementation CPU GC Real Paging
780 CL 0.04 0.00
785 CL 0.02 0.00
750 CL 0.06 0.00
730 CL 0.17 0.00
Perq

750 Franz
TrlOn & LclfYes 0.03 0.00
TrlOn & LclfNo 0.03 0.00
TrlOff & LclfYes 0.03 0.00
TrlOff & LclfNo 0.12 0.00

780 Franz
TrlOn & LclfYes 0.02 0.00
TrlOn & LclfNo 0.02 0.00
TrlOff & LclfYes 0.02 0.00
TrlOff & LclfNo 0.07 0.00

Franz 68000
TrlOn & LclfYes 0.03 0.00
TrlOn & LclfNo 0.05 0.00
TrlOff & LclfYes 0.05 0.00
TrlOff & LclfNo 0.10 0.00

InterLisp-10
LM-2

254

Raw Time
Frpoly Power = 2 r3 = r in flonums

Implementation CPU GC Real Paging
SAIL 0.00 0.00 0.02

Lambda 0.01 0.00
Lambda (MC) 0.00 0.00

3600 0.00 0.00
3600 + IFU 0.00 0.00
Dandelion
Dolphin
Dorado

S-1 0.00
PSL-SUN 0.08 0.00
PSL-20 0.02 0.00

PSL-3081 0.00 0.00
PSL-Cray 0.00 0.00
PSL-750 0.11 0.00

PSL-750 (VMS) 0.07 0.00
PSL-780 0.03 0.00

PSL-DN300 0.43 0.00
PSL-DN600 0.42 0.00
PSL-DN160
PSL-HP200 0.09 0.00
PSL-HP-UX 0.14 0.00

InterLispVax 780
MV4000 CL 0.05
MV8000 CL 0.04
MV10000 CL 0.02
3600 + FPA 0.00 0.00

750 NIL 0.05 0.05
8600 CL 0.02 0.00

§ 3.20 Polynomial Manipulation 255

Raw Time
Frpoly Power = 2 r3 = r in flonums

Implementation CPU GC Real Paging
780 CL 0.04 0.00
785 CL 0.02 0.00
750 CL 0.06 0.00
730 CL 0.16 0.00
Perq

750 Franz
TrlOn & LclfYes 0.02 0.00
TrlOn & LclfNo 0.03 0.00
TrlOff & LclfYes 0.02 0.00
TrlOff & LclfNo 0.08 0.00

780 Franz
TrlOn & LclfYes 0.02 0.00
TrlOn & LclfNo 0.02 0.00
TrlOff & LclfYes 0.03 0.00
TrlOff & LclfNo 0.07 0.00

Franz 68000
TrlOn & LclfYes 0.05 0.00
TrlOn & LclfNo 0.05 0.00
TrlOff & LclfYes 0.05 0.00
TrlOff & LclfNo 0.08 0.00

InterLisp-10
LM-2

256

Raw Time
Frpoly Power = 5 r = x + y + z + 1

Implementation CPU GC Real Paging
SAIL 0.04 0.00 0.02

Lambda 0.10 0.02
Lambda (MC) 0.04 0.00

3600 0.05 0.01
3600 + IFU 0.04 0.01
Dandelion
Dolphin
Dorado

S-1 0.03
PSL-SUN 0.23 0.00
PSL-20 0.09 0.00

PSL-3081 0.02 0.00
PSL-Cray 0.01 0.00
PSL-750 0.40 0.00

PSL-750 (VMS) 0.33 0.00
PSL-780 0.20 0.00

PSL-DN300 0.29 0.00
PSL-DN600 0.29 0.00
PSL-DN160
PSL-HP200 0.25 0.00
PSL-HP-UX 0.24 0.00

InterLispVax 780
MV4000 CL 0.37
MV8000 CL 0.30
MV10000 CL 0.14
3600 + FPA 0.04 0.01

750 NIL 0.36 0.36
8600 CL 0.08 0.00

§ 3.20 Polynomial Manipulation 257

Raw Time
Frpoly Power = 5 r = x + y + z + 1

Implementation CPU GC Real Paging
780 CL 0.23 0.00
785 CL 0.13 0.00
750 CL 0.37 0.00
730 CL 0.94 0.00
Perq

750 Franz
TrlOn & LclfYes 0.27 0.00
TrlOn & LclfNo 0.35 0.00
TrlOff & LclfYes 0.27 0.00
TrlOff & LclfNo 0.93 0.00

780 Franz
TrlOn & LclfYes 0.15 0.00
TrlOn & LclfNo 0.15 0.00
TrlOff & LclfYes 0.02 0.00
TrlOff & LclfNo 0.60 0.00

Franz 68000
TrlOn & LclfYes 0.33 0.00
TrlOn & LclfNo 0.45 0.00
TrlOff & LclfYes 0.37 0.00
TrlOff & LclfNo 0.90 0.00

InterLisp-10
LM-2

258

Raw Time
Frpoly Power = 5 r2 = 1000r

Implementation CPU GC Real Paging
SAIL 0.06 0.00 1.06

Lambda 0.16 0.05
Lambda (MC) 0.11 0.00

3600 0.19 0.02
3600 + IFU 0.14 0.01
Dandelion
Dolphin
Dorado

S-1
PSL-SUN 2.04 0.00
PSL-20 0.37 0.00

PSL-3081 0.09 0.00
PSL-Cray
PSL-750 1.58 0.00

PSL-750 (VMS) 1.54 0.00
PSL-780 0.90 0.00

PSL-DN300 1.63 0.00
PSL-DN600 1.77 0.00
PSL-DN160
PSL-HP200 1.34 0.00
PSL-HP-UX 1.60 0.00

InterLispVax 780
MV4000 CL 0.64
MV8000 CL 0.51
MV10000 CL 0.25
3600 + FPA 0.14 0.01

750 NIL 2.15 2.15
8600 CL 0.12 0.00

§ 3.20 Polynomial Manipulation 259

Raw Time
Frpoly Power = 5 r2 = 1000r

Implementation CPU GC Real Paging
780 CL 0.36 0.00
785 CL 0.23 0.00
750 CL 0.60 0.00
730 CL 1.46 0.00
Perq

750 Franz
TrlOn & LclfYes 0.48 0.37
TrlOn & LclfNo 1.18 0.57
TrlOff & LclfYes 0.48 0.37
TrlOff & LclfNo 1.80 0.57

780 Franz
TrlOn & LclfYes 0.67 0.37
TrlOn & LclfNo 0.67 0.37
TrlOff & LclfYes 0.38 0.00
TrlOff & LclfNo 1.18 0.42

Franz 68000
TrlOn & LclfYes 0.73 0.00
TrlOn & LclfNo 0.85 0.00
TrlOff & LclfYes 0.80 0.00
TrlOff & LclfNo 1.32 0.00

InterLisp-10
LM-2

260

Raw Time
Frpoly Power = 5 r3 = r in flonums

Implementation CPU GC Real Paging
SAIL 0.04 0.00 0.08

Lambda 0.15 0.04
Lambda (MC) 0.08 0.00

3600 0.05 0.01
3600 + IFU 0.04 0.01
Dandelion
Dolphin
Dorado

S-1 0.03
PSL-SUN 0.40 0.00
PSL-20 0.13 0.00

PSL-3081 0.03 0.00
PSL-Cray 0.02 0.00
PSL-750 0.49 0.00

PSL-750 (VMS) 0.49 0.00
PSL-780 0.28 0.00

PSL-DN300 0.44 0.00
PSL-DN600 0.44 0.00
PSL-DN160
PSL-HP200 0.41 0.00
PSL-HP-UX 0.41 0.00

InterLispVax 780
MV4000 CL 0.40
MV8000 CL 0.33
MV10000 CL 0.16
3600 + FPA 0.04 0.01

750 NIL 0.42 0.43
8600 CL 0.10 0.00

§ 3.20 Polynomial Manipulation 261

Raw Time
Frpoly Power = 5 r3 = r in flonums

Implementation CPU GC Real Paging
780 CL 0.30 0.00
785 CL 0.18 0.00
750 CL 0.48 0.00
730 CL 1.29 0.00
Perq

750 Franz
TrlOn & LclfYes 0.30 1.83
TrlOn & LclfNo 1.02 0.67
TrlOff & LclfYes 0.30 1.83
TrlOff & LclfNo 1.62 0.63

780 Franz
TrlOn & LclfYes 0.22 0.00
TrlOn & LclfNo 3.85 1.83
TrlOff & LclfYes 0.98 0.40
TrlOff & LclfNo 3.85 1.83

Franz 68000
TrlOn & LclfYes 0.43 0.00
TrlOn & LclfNo 0.53 0.00
TrlOff & LclfYes 0.48 0.00
TrlOff & LclfNo 0.98 0.00

InterLisp-10
LM-2

262

Raw Time
Frpoly Power = 10 r = x + y + z + 1

Implementation CPU GC Real Paging
SAIL 0.46 0.79 1.90

Lambda 1.20 0.22
Lambda (MC) 0.54 0.05

3600 0.49 0.08
3600 + IFU 0.39 0.06
Dandelion
Dolphin
Dorado

S-1 0.42
PSL-SUN 2.75 0.00
PSL-20 0.92 0.00

PSL-3081 0.25 0.00
PSL-Cray 0.14 0.00
PSL-750 4.52 0.00

PSL-750 (VMS) 3.54 0.00
PSL-780 2.00 0.00

PSL-DN300 3.45 0.00
PSL-DN600 3.60 0.00
PSL-DN160
PSL-HP200 2.24 0.00
PSL-HP-UX 2.44 0.00

InterLispVax 780
MV4000 CL 3.77
MV8000 CL 3.01
MV10000 CL 1.45
3600 + FPA 0.39 0.06

750 NIL 3.85 3.88
8600 CL 0.64 0.00

§ 3.20 Polynomial Manipulation 263

Raw Time
Frpoly Power = 10 r = x + y + z + 1

Implementation CPU GC Real Paging
780 CL 2.13 0.00
785 CL 1.19 0.00
750 CL 3.38 0.00
730 CL 8.91 0.00
Perq

750 Franz
TrlOn & LclfYes 3.15 0.00
TrlOn & LclfNo 5.37 1.38
TrlOff & LclfYes 3.15 0.00
TrlOff & LclfNo 12.07 1.37

780 Franz
TrlOn & LclfYes 2.60 0.83
TrlOn & LclfNo 2.60 0.83
TrlOff & LclfYes 2.33 0.00
TrlOff & LclfNo 7.67 0.88

Franz 68000
TrlOn & LclfYes 4.17 0.00
TrlOn & LclfNo 5.63 0.00
TrlOff & LclfYes 4.72 0.00
TrlOff & LclfNo 10.43 0.00

InterLisp-10
LM-2

264

Raw Time
Frpoly Power = 10 r2 = 1000r

Implementation CPU GC Real Paging
SAIL 0.92 5.94 12.48

Lambda 2.30 0.68
Lambda (MC) 1.56 0.03

3600 2.89 0.26
3600 + IFU 2.10 0.18
Dandelion
Dolphin
Dorado

S-1
PSL-SUN 37.60 0.00
PSL-20 6.46 0.00

PSL-3081 0.35 0.00
PSL-Cray
PSL-750 27.77 0.00

PSL-750 (VMS) 23.38 0.00
PSL-780 13.02 0.00

PSL-DN300 32.67 0.00
PSL-DN600 33.33 0.00
PSL-DN160
PSL-HP200 26.06 0.00
PSL-HP-UX 30.51 0.00

InterLispVax 780
MV4000 CL 10.05
MV8000 CL 13.84
MV10000 CL 3.74
3600 + FPA 2.10 0.18

750 NIL 38.71 38.98
8600 CL 1.40 0.00

§ 3.20 Polynomial Manipulation 265

Raw Time
Frpoly Power = 10 r2 = 1000r

Implementation CPU GC Real Paging
780 CL 4.45 0.00
785 CL 2.64 0.00
750 CL 7.25 0.00
730 CL 17.30 0.00
Perq

750 Franz
TrlOn & LclfYes 11.82 3.52
TrlOn & LclfNo 11.82 3.52
TrlOff & LclfYes 14.95 5.82
TrlOff & LclfNo 22.27 5.93

780 Franz
TrlOn & LclfYes 8.87 3.70
TrlOn & LclfNo 8.87 3.70
TrlOff & LclfYes 8.00 2.27
TrlOff & LclfNo 14.87 3.83

Franz 68000
TrlOn & LclfYes 15.07 2.08
TrlOn & LclfNo 16.53 0.00
TrlOff & LclfYes 15.71 2.16
TrlOff & LclfNo 21.35 0.00

InterLisp-10
LM-2

266

Raw Time
Frpoly Power = 10 r3 = r in flonums

Implementation CPU GC Real Paging
SAIL 0.47 2.98 5.89

Lambda 1.60 0.45
Lambda (MC) 1.08 0.01

3600 0.54 0.08
3600 + IFU 0.43 0.06
Dandelion
Dolphin
Dorado

S-1 0.43
PSL-SUN 4.43 0.00
PSL-20 1.50 0.00

PSL-3081 0.22 0.00
PSL-Cray 0.23 0.00
PSL-750 7.19 0.00

PSL-750 (VMS) 5.59 0.00
PSL-780 3.06 0.00

PSL-DN300 5.61 0.00
PSL-DN600 5.69 0.00
PSL-DN160
PSL-HP200 4.27 0.00
PSL-HP-UX 4.72 0.00

InterLispVax 780
MV4000 CL 4.08
MV8000 CL 3.49
MV10000 CL 1.64
3600 + FPA 0.43 0.06

750 NIL 4.64 4.66
8600 CL 0.97 0.00

§ 3.20 Polynomial Manipulation 267

Raw Time
Frpoly Power = 10 r3 = r in flonums

Implementation CPU GC Real Paging
780 CL 2.89 0.00
785 CL 1.67 0.00
750 CL 4.69 0.00
730 CL 12.80 0.00
Perq

750 Franz
TrlOn & LclfYes 3.47 0.00
TrlOn & LclfNo 7.27 2.95
TrlOff & LclfYes 3.47 0.00
TrlOff & LclfNo 13.87 2.88

780 Franz
TrlOn & LclfYes 3.85 1.83
TrlOn & LclfNo 3.85 1.83
TrlOff & LclfYes 2.60 0.00
TrlOff & LclfNo 8.62 1.43

Franz 68000
TrlOn & LclfYes 5.17 4.20
TrlOn & LclfNo 6.65 0.00
TrlOff & LclfYes 5.70 4.25
TrlOff & LclfNo 11.43 0.00

InterLisp-10
LM-2

268

Raw Time
Frpoly Power = 15 r = x + y + z + 1

Implementation CPU GC Real Paging
SAIL 3.15 4.82 12.57

Lambda 7.80 1.28
Lambda (MC) 3.86 0.13

3600 3.45 0.41
3600 + IFU 2.65 0.29
Dandelion
Dolphin
Dorado

S-1 2.87
PSL-SUN 86.10 6.10
PSL-20 12.68 0.00

PSL-3081 4.04 0.00
PSL-Cray 0.95 0.00
PSL-750 81.66 3.16

PSL-750 (VMS) 63.76 0.00
PSL-780 35.46 1.39

PSL-DN300 70.27 3.27
PSL-DN600 75.10 3.21
PSL-DN160
PSL-HP200 39.98 0.00
PSL-HP-UX 47.19 0.00

InterLispVax 780
MV4000 CL 25.93
MV8000 CL 21.27
MV10000 CL 10.15
3600 + FPA 2.65 0.29

750 NIL 24.93 25.81
8600 CL 4.13 0.00

§ 3.20 Polynomial Manipulation 269

Raw Time
Frpoly Power = 15 r = x + y + z + 1

Implementation CPU GC Real Paging
780 CL 13.21 0.00
785 CL 7.60 0.00
750 CL 21.51 0.00
730 CL 55.45 0.00
Perq

750 Franz
TrlOn & LclfYes 29.47 6.65
TrlOn & LclfNo 37.23 9.12
TrlOff & LclfYes 29.47 6.65
TrlOff & LclfNo 82.57 9.38

780 Franz
TrlOn & LclfYes 18.48 5.63
TrlOn & LclfNo 18.48 5.63
TrlOff & LclfYes 20.60 4.02
TrlOff & LclfNo 52.52 5.32

Franz 68000
TrlOn & LclfYes 31.12 4.39
TrlOn & LclfNo 42.70 6.77
TrlOff & LclfYes 34.67 4.48
TrlOff & LclfNo 73.02 6.80

InterLisp-10
LM-2

270

Raw Time
Frpoly Power = 15 r2 = 1000r

Implementation CPU GC Real Paging
SAIL 9.41 50.48 94.77

Lambda 18.90 5.50
Lambda (MC) 14.35 0.54

3600 22.35 2.78
3600 + IFU 15.63 1.89
Dandelion
Dolphin
Dorado

S-1
PSL-SUN
PSL-20 68.18 0.00

PSL-3081 20.13 1.34
PSL-Cray
PSL-750 394.17 22.27

PSL-750 (VMS) 293.68 8.04
PSL-780 161.61 8.66

PSL-DN300
PSL-DN600 485.28 23.65
PSL-DN160
PSL-HP200 410.20 2.52
PSL-HP-UX 476.42 4.30

InterLispVax 780
MV4000 CL 143.03
MV8000 CL 107.98
MV10000 CL 40.48
3600 + FPA 15.63 1.89

750 NIL 479.48 482.87
8600 CL 10.45 9.37

§ 3.20 Polynomial Manipulation 271

Raw Time
Frpoly Power = 15 r2 = 1000r

Implementation CPU GC Real Paging
780 CL 34.48 26.99
785 CL 22.20 7.30
750 CL 57.00 51.82
730 CL 139.49 122.14
Perq

750 Franz
TrlOn & LclfYes 129.57 48.22
TrlOn & LclfNo 155.45 67.14
TrlOff & LclfYes 129.57 48.22
TrlOff & LclfNo 202.68 67.47

780 Franz
TrlOn & LclfYes 93.87 41.75
TrlOn & LclfNo 93.87 41.75
TrlOff & LclfYes 86.50 30.38
TrlOff & LclfNo 132.79 43.00

Franz 68000
TrlOn & LclfYes 176.77 30.73
TrlOn & LclfNo 188.30 21.68
TrlOff & LclfYes 180.50 30.83
TrlOff & LclfNo 218.67 21.65

InterLisp-10
LM-2

272

Raw Time
Frpoly Power = 15 r3 = r in flonums

Implementation CPU GC Real Paging
SAIL 3.16 48.86 81.33

Lambda 11.00 2.47
Lambda (MC) 7.66 0.23

3600 3.84 0.40
3600 + IFU 3.04 0.30
Dandelion
Dolphin
Dorado

S-1 3.09
PSL-SUN
PSL-20 11.13 0.00

PSL-3081 2.54 0.00
PSL-Cray 1.66 0.00
PSL-750 61.11 3.63

PSL-750 (VMS) 40.79 0.00
PSL-780 21.84 1.56

PSL-DN300
PSL-DN600 44.20 4.88
PSL-DN160
PSL-HP200 30.66 0.00
PSL-HP-UX 33.71 0.00

InterLispVax 780
MV4000 CL 27.23
MV8000 CL 23.95
MV10000 CL 11.02
3600 + FPA 3.04 0.30

750 NIL 30.70 31.18
8600 CL 5.84 0.00

§ 3.20 Polynomial Manipulation 273

Raw Time
Frpoly Power = 15 r3 = r in flonums

Implementation CPU GC Real Paging
780 CL 17.83 13.78
785 CL 10.40 0.00
750 CL 31.05 26.80
730 CL 85.16 61.52
Perq

750 Franz
TrlOn & LclfYes 36.69 11.20
TrlOn & LclfNo 41.47 11.00
TrlOff & LclfYes 36.69 11.20
TrlOff & LclfNo 86.83 11.22

780 Franz
TrlOn & LclfYes 21.70 6.97
TrlOn & LclfNo 21.70 6.97
TrlOff & LclfYes 25.08 6.77
TrlOff & LclfNo 54.27 6.95

Franz 68000
TrlOn & LclfYes 37.60 20.53
TrlOn & LclfNo 49.18 17.18
TrlOff & LclfYes 40.88 20.55
TrlOff & LclfNo 79.72 17.23

InterLisp-10
LM-2

274

Well, it certainly is hard to explain

because there are several

different cases. There is a prefetcher. . . .

— Bruce Edwardsexplaining the 3600’s instruction cache. (September 18, 1984.)

This article couldn’t do nearly as much damage

as the Gabriel and Brooks “critique”

or the upcoming publication

of last year’s Lisp benchmarks by MIT Press.

— Anonymous commenting on the author of this book. (April 1985)

Would you like to volunteer?

— Peter Deutsch—the question I should have said ‘no’ to. (February 27, 1981)

275

3.21 Conclusions

Benchmarks are useful when the associated timings are accompanied by an
analysis of the facets of Lisp and the underlying machine that are being measured.
To claim that a simple benchmark is a uniform indicator of worth for a particular
machine in relation to others is not a proper use of benchmarking. This is why
this book goes to great lengths to explain as many of the trade-offs as possible so
that the potential benchmarker and the benchmarker’s audience are aware of the
pitfalls of this exercise.

Benchmarks are useful for comparing performance of Lisp implementations.
They help programmers tailor their programming styles and make programming
decisions where performance is a consideration, although it is not recommended
that programming style take a back seat to performance. Benchmarks help identify
weak points in an implementation, so that efforts to improve the Lisp can focus
on the points of highest leverage.

Computer architectures have become so complex that it is often difficult to
analyze program behavior in the absence of a set of benchmarks to guide that
analysis. It is often difficult to perform an accurate analysis without doing some
experimental work to guide the analysis and keep it accurate; without analysis it
is difficult to know how to benchmark correctly.

There were two major tangible benefits of the work reported in this book: an
increasingly educated audience and improved implementations.

While the studies reported here were going on, many debates arose. These
debates were focussed on two questions: Is this computer faster than that com-
puter? and Can one benchmark show that a particular Lisp implementation is
faster than another, while another benchmark shows the opposite? As the bench-
marking work progressed, the level of discussion improved, and now the debates
are about whether a particular Lisp implementation is best suited to a certain
application. Rather than using one, often anonymous, benchmark, people started
using a suite of benchmarks and started talking about the specific merits of an
implementation.

The other benefit was that running these benchmarks turned up two sorts
of bugs in implementations; one caused incorrectness and the other caused in-
efficiency. The ultimate benefactor of the removal of these bugs is the user of

276

sophisticated Lisp implementations—a user who relies on the implementors for a
correct and efficient Lisp system.

The final arbiter of the usefulness of a Lisp implementation is the ease that
the user and programmer have with that implementation. Performance is an issue,
but it is not the only issue.

References

[Baker 1978a] Baker, H. B. List Processing in Real Time on a Serial Computer,
Communications of the ACM, Vol. 21, no. 4, April 1978.

[Baker 1978b] Baker, H. B. Shallow Binding in Lisp 1.5, Communications of the
ACM, Vol. 21, no. 7, July 1978.

[Bates 1982] Bates, R., Dyer, D., Koomen, H. Implementation of InterLisp on
a Vax, Proceedings of the 1982 ACM Symposium on Lisp and Functional
Programming, August 1982.

[Bobrow 1973] Bobrow, D., Wegbreit, B., A Model and Stack Implementation
of Multiple Environments in Communications of the ACM, Vol. 16, No.
10, Oct. 1973.

[Bobrow 1979] Bobrow, D., Clark, D., Compact Encodings of List Structure” in
ACM Trans. on Prog. lang. and Systems, Vol 1 No 2 p.266 October
1979.

[Brooks 1982a] Brooks, R. A., Gabriel, R. P., Steele, G. L. An Optimizing
Compiler For Lexically Scoped Lisp, Proceedings of the 1982 ACM Compiler
Construction Conference, June, 1982.

[Brooks 1982b] Brooks, R. A., Gabriel, R. P., Steele, G. L. S-1 Common Lisp
Implementation, Proceedings of the 1982 ACM Symposium on Lisp and Func-
tional Programming, August 1982.

[Burton 1981] Burton, R. R, et. al. InterLisp-D Overview in Papers on
InterLisp-D, Xerox Palo Alto Research Center, CIS-5 (SSL-80-4), 1981.

[Clark 1981] Clark, D., Lampson B., and Pier, K. The Memory System of a High-
Performance Personal Computer in IEEE Transactions on Computers,
vol C-30, No 10, October 1981.

[Cohen 1981] Cohen, J. Garbage Collection of Linked Data Structures, ACM
Computing Surveys, Vol. 13, no. 3, September 1981.

[Correll 1979] Correll, Steven. S-1 Uniprocessor Architecture (SMA-4) in The
S-1 Project 1979 Annual Report, Chapter 4. Lawrence Livermore Na-
tional Laboratory, Livermore, California, 1979.

[Deutsch 1976] Deutsch, L. P., Bobrow, D., An Efficient, Incremental, Au-
tomatic Garbage Collector in The Communications of the ACM, July
1976.

[Fateman 1973] Fateman, R. J. Reply to an Editorial, ACM SIGSAM Bulletin
25, March 1973.

278

[Foderaro 1982] Foderaro, J. K., Sklower, K. L. The FRANZ Lisp Manual,
University of California, Berkeley, Berkeley, California, April 1982.

[Griss 1982] Griss, Martin L, Benson, E. PSL: A Portable LISP System, Pro-
ceedings of the 1982 ACM Symposium on Lisp and Functional Programming,
August 1982.

[Lampson 1982] Lampson, Butler W. Fast Procedure Call, Proceedings of the
1982 ACM Symposium on Architectural Support for Programming Languages
and Operating Systems, SIGARCH Computer Architecture News, Vol. 10
no.2, March 1982.

[Masinter 1981a] Masinter, L. InterLisp-VAX: A Report, Department of
Computer Science, Stanford University, STAN-CS-81-879, August 1981.

[Marti 1979] Marti, J,. Hearn, A. C., Griss, M. L. Standard Lisp Report in
SIGPLAN Notices 14, 10 October 1979.

[Masinter 1981b] Masinter, L. M., Deutsch, L. P. Local Optimization For a
Compiler for Stack-based Lisp Machines in Papers on InterLisp-D, Xerox
Palo Alto Research Center, CIS-5 (SSL-80-4), 1981.

[Moon 1974] Moon, David. MacLisp Reference Manual, Revision 0, M.I.T.
Project MAC, Cambridge, Massachusetts, April 1974.

[Moon 1984] Moon, David. Garbage Collection in a Large Lisp System, in the
Proceedings of the 1984 ACM Symposium on Lisp and Functional Program-
ming, August 1984.

[Steele 1977a] Steele, Guy Lewis Jr. Data Representations in PDP-10 MacLisp,
Proceedings of the 1977 MACSYMA Users’ Conference. NASA Scientific and
Technical Information Office, Washington, D.C., July 1977.

[Steele 1977b] Steele, Guy Lewis Jr. Fast Arithmetic in MacLisp, Proceedings
of the 1977 MACSYMA Users’ Conference. NASA Scientific and Technical
Information Office, Washington, D.C., July 1977.

[Steele 1979] Steele, Guy Lewis Jr., Sussman, G. J. The Dream of a Lifetime:
A Lazy Scoping Mechanism, Massachusetts Institute of Technology AI Memo
527, November 1979.

[Steele 1982] Steele, Guy Lewis Jr. et. al. An Overview of Common Lisp, Pro-
ceedings of the 1982 ACM Symposium on Lisp and Functional Programming,
August 1982.

[Teitelman 1978] Teitelman, Warren, et. al. InterLisp Reference Manual,
Xerox Palo Alto Research Center, Palo Alto, California, 1978.

279

[Weinreb 1981] Weinreb, Daniel, and Moon, David. LISP Machine Manual,
Fourth Edition. Massachusetts Institute of Technology Artificial Intelligence
Laboratory, Cambridge, Massachusetts, July 1981.

[Weyhrauch 1981] Weyhrauch, R. W., Talcott, C. T., Scherlis, W. L., Gabriel,
R. P.; personal communication and involvement.

[White 1979] White, J. L., NIL: A Perspective, Proceedings of the 1979 MAC-

SYMA Users Conference, July 1979.

280

281

Index

2005 (Puzzle Benchmark), 208.

=, 21.

*RSET (MacLisp), 11.

8AREF (InterLisp), 221.

8ASET (Interlisp), 221.

16AREF (InerLisp), 209.

16ASET (InterLisp), 209.

A register (MacLisp), 32.

A-list lambda-binding, 6.

abstract data structure, 156.

Accent (SPICE Operating System), 61.

address space, 1.

analysis, 1.

AOS/VS (Data General Operating
System), 76.

Apollo, 66.

Apollo Dn160, 70.

Apollo DN300, 70.

Apollo DN600, 70.

APPEND, 18.

APPLY, 12, 177.

AR1 register (MacLisp), 32.

AR2A register (MacLisp), 32.

areas, 36.

arguments in registers, 8.

arithmetic, 16, 57.

arrays, 12, 13, 31, 48, 52, 59, 64, 71,
74, 78, 195, 206, 218.

array headers, 31.

array references, 195, 206, 218.

assembly language, 31.

ASSOC, 18.

atoms, 5.

backtracking, 207.

Baskett, 206.

benchmarking, 1, 2, 81, 23.

benchmarks, 1, 2, 81.

Berkeley, 51.

BIBOP, 15, 31, 51, 64, 77.

Big Bag Of Pages, 15, 31, 51, 64, 77.

bigfloat, 17.

bignums, 17, 36, 43, 52, 55, 57, 64, 245.

binding, 5, 6, 38, 93.
binding stack, 38.
black art (Benchmarking), 23.
block compilation, 9, 11.
block-packing puzzle, 206.
Bob Boyer, 116.
bottleneck registers (RTA, RTB, S-1), 46.
boxed numbers, 9, 16, 23, 33.
Boyer (Benchmark), 45, 139.
Boyer (Human), 116.
Browse (Benchmark), 136.
buckets, 22.
buddy-block system, 31.
bus size, 4.

cache memory, 2, 3, 4, 6, 25, 40, 43,
47, 61, 75, 110, 140.

CADR (Lisp Machine), 36, 40, 42.
CALLS instruction (Vax), 10.
CAR, 12, 13.
Carnegie-Mellon University, 58.
CATCH (Lisp primitive), 9, 44, 60, 79, 99.
CDR, 12.
CDR-coding, 14, 37, 39, 43, 73.
CHAOSNET, 22.
circular lists, 156.
circular queue, 3.
clock rate, 3.
closed-coding, 17.
closed-compiling, 17.
closing a file, 227.
closures, 7, 79.
CMACROs (PSL), 67.
Common Lisp, 8, 19, 54, 58.
common-subexpression elimination, 23.
compilation, 44.
compiler, 8, 20, 22.
complex numbers, 49.
computer algebra, 66.
CONS, 12.
constant-folding, 23.
constants, 5.
Conway, 206.
contagion code, 57.

282

context-switching, 7.
Cray-1, 42, 66, 69.
Cray-XMP, 69.
cross optimizations, 23.
Ctak (Benchmark), 99.
CTSS (Cray Operating System), 69.

D-LAST (CADR Microcode), 35.
DandeLion (Xerox), 75.
DandeTiger (Xerox), 75.
data base, 139.
data-driven derivative, 175, 181.
Data General Common Lisp, 76.
Data General MV Architecture

Computers, 76.
data paths, 3.
data stack, 39.
data structures, 12.
DATATYPE (InterLisp), 12, 160.
data types, 47, 51, 52, 54, 71, 73, 77.
Dderiv (Benchmark), 91, 175.
debuggabilly, 11.
debugging, 1.
DEC-20, 13, 31, 66, 69.
deep binding, 5, 6, 20, 93.
DEFSTRUCT, 12, 158.
DEFSUBST, 40.
DEFVST, 12.
deleting a file, 227.
depth-first search, 207.
Deriv (Benchmark), 170.
derivative, 170.
Destructive (Benchmark), 146.
destructive list operations, 246.
DG-UX (Data General Operating

System), 76.
directed graph, 156.
disk service, 2.
Div2 (Benchmark), 186.
division by 2, 186.
Dolphin (Xerox), 74.
Dorado (Xerox), 75.
DRECONC, 18.
dynamic, 5.
dynamic binding, 93.
dynamic variables, 6.

EBOX, 25, 111.
ECL logic, 65.
ELISP, 66.
EQ, 21.
EQUAL, 21.
error correction, 4, 37.
Ethernet, 22.

expert system, 139.

EXTEND, 12.

FASL (File Format), 67.

fast fourier transform, 193.

fast links, 11.

Fateman, 51, 245.

Fdderiv (Benchmark), 181.

FFT (Benchmark), 40, 193.

file input, 232.

file management, 20, 21.

file output, 227.

file print, 227.

file read, 232.

file system, 20, 21.

firmware, 18.

fixed-point arrays, 13.

fixnums, 35, 55, 58, 64, 78, 148.

FIXSW, 148.

FLAVORS, 12, 38.

FLENGTH, 149.

flexibility, 1.

floating point arrays 13.

floating point numbers, 40, 57, 58, 64,
71, 78, 195, 245.

flonums (see Floating Point Numbers), 35.

FLOOR, 148.

FLPDL (MacLisp), 33.

fluid, 5.

Forest Baskett, 206.

FORTRAN-like programming style, 195.

forwarding pointer, 14.

Fprint (Benchmark), 227.

frames, 139.

Franz Lisp, 2, 11, 51.

Fread (Benchmark), 232.

free, 5.

free/special lookup, 7.

free variables, 6.

FRPLACA, 13, 149.

Frpoly (Benchmark), 40, 240.

FUNCALL, 12, 176.

function calls, 6, 8, 35, 39, 43, 50, 51,
55, 59, 63, 72, 78, 82.

funny quotes, 92, 98, 104, 109, 115, 135,
145, 152, 169, 174, 180, 185, 192, 202,
216, 226, 231, 235, 239, 274.

FXPDL, 33.

283

G-vectors (SPICE), 59.

garbage collection, 6, 13, 20, 28, 30,
57, 63, 67, 74, 78.

generic arithmetic, 15, 17.

GENSYM, 140.

GET, 176.

global, 5.

global variables, 20.

Griss, 66.

hardware, 2.

hardware considerations, 3.

hardware tagging, 36.

hash table, 21.

hayseed hackers, 11.

heap, 10.

Hewlitt-Packard, 66.

history of the address space, 29.

HP9000, Series 200, 69.

HP-9836, 66, 69.

HRRZ, 13.

hunks (MacLisp), 12, 31.

I-vector (SPICE), 59.

IBM 370, 66, 40, 70.

IBM 3081, 42, 70.

IEEE proposed standard floating-point, 46.

IEEE single precision specifications, 40.

IFU (Symbolics), 40.

Ikuo Takeuchi, 81.

implementation strategies, 5.

implementation tactics, 5.

inner loops, 28, 30.

instruction-counting methodlogy, 3.

instruction fetch, 3.

instruction pre-fetch unit (Symbolics), 40.

InterLisp, 2, 9, 11, 12, 13, 15, 17, 19,
73, 160, 196, 221.

InterLisp-10, 2, 11, 13, 17.

InterLisp-D, 2, 15, 73.

InterLisp-Vax, 2.

interpreter, 7, 11, 20.

iteration versus recursion, 186.

J Moore, 116.

John Conway, 206.

John McCarthy, 81.

JonL White, 31.

JSB, 51.

jumping (Triang Benchmark), 218.

KA-10 (DEC), 6, 9.

KL-10 (DEC), 6, 9.

lambda binding (see Binding), 5, 20.

lambda-list, 56.

Lambda machine (LMI), 42.

LAP (Lisp Assembly Program), 67.

least recently used (LRU), 36.

levels of Lisp system architecture, 2.

lexical, 5, 6, 7.

lexical binding, 6.

lexical contour, 7.

lexical variables, 6.

Lisp-in-Lisp, 46, 58, 66.

Lisp compiler, 8, 20, 22.

Lisp instruction level, 5.

Lisp machines, 10, 12 ,15, 34, 35, 36.

Lisp machine hardware, 35, 36.

Lisp Machine Inc, 34, 42.

Lisp operation level, 18.

list utilities, 147.

LM-2 (Lisp mahine), 36.

LMI, 34, 42.

load average, 2, 30.

loading compiled Lisp code, 32.

local function call, 51.

local variable, 5.

locality, 3, 25.

locative, 37.

loop-unwinding, 23.

LRU (Least Recently Used), 36.

MacLisp, 10, 11, 12, 15, 16, 19, 31,
50, 148, 181.

MACRO32 (Assembly language), 57.

MACSYMA, 28, 51.

MACSYMA-like system, 28.

MAPCAR, 18.

Martin Griss, 66.

MBOX, 111.

MC68000, 25, 66, 69.

McCarthy, 81.

MDL (Language), 15.

memory bandwidth, 4.

methodology, 2.

microcode, 3, 15, 18, 20, 58, 73.

microcoded machines, 18.

microcompiler (LMI), 44.

micro-micro function call, 44.

mircostack (LMI), 44.

MIT Artificial Intelligence Laboratory, 34.

MIT CADR, 34.

monitor calls, 32.

Moore, 116.

Multics-like ring protection, 46.

multiple values, 9, 45, 60.

284

multi-processing Lisp, 7.
MV4000 (Data General), 80.
MV8000 (Data General), 80.
MV10000 (Data General), 80.
MV memory structure (Data General), 76.
MV-UX (Data General Operating

System), 76.

natural benchmarks, 2.
NCONC, 18.
New Implementation of Lisp, 54.
NIL, 15, 54.
NOUUO (MacLisp), 11.
NuBus, 42.
NULL, 15.
number-CONSing, 16, 23, 33, 49, 52, 55.
number-format sizes, 17.
obarray, 21.
object oriented programming, 12.
oblist, 21.
one-dimensional arrays, 218.
open-coding, 17, 22.
open-compiling 17, 22.
opening a file, 227, 232.
operand fetch and decode, 6.
&optional, 56, 63.
order of evaluation, 23.

P0 space (Vax), 55.
P1 space (Vax), 55.
page boundaries, 30.
paging, 2, 14, 30, 34, 36, 38, 42, 61,

70, 73, 140.
PASCAL, 5.
pattern matching, 139.
PDL buffer, 3.
PDL numbers, 10, 16, 27, 33, 50.
PDP-6, 31.
PDP-10 MacLisp, 2.
PDP-10, 9, 16, 31.
peephole optimization, 23.
performance, 1.
performance evaluation defined, 1.
performance profile, 23.
PERQ Systems Corporation, 58.
PERQ T2, 62.
personal machines, 29.
pipeline, 4, 44, 47, 50, 65.
polynomial manipulation, 240.
Portable Standard Lisp (PSL), 8, 16,

63, 66, 67, 68, 69.
position-independent code, 56.
powers of polynomials, 245.
pre-fetch units, 4.

Prettyprint, 21.
PRINT, 21, 227, 236.
programming style, 23, 245.
property lists, 139, 246.
PSL (Portable Standard Lisp), 8, 16,

63, 66, 67, 68, 69.
PSL compiler, 67.
PSL versions, 68.
PSL-HP200, 68.
PSL-HP-UX (Hewlit-Packard Operating

System), 69.
Puzzle (Benchmark), 59, 203, 218.

QUOTIENT, 148.

random graph, 156.
random numbers, 140.
random number generator, 140, 156.
range checking of arrays, 13.
raw-data tables, 81.
READ, 21, 232.
real-benchmark methodology, 3.
recursion versus iteration, 186.
reference count (Garbage Collection),

14, 74.
register A (MacLisp), 32.
register allocation, 6, 9, 23, 39.
register AR1 (MacLisp), 32.
register AR2A (MacLisp), 32.
register B (MacLisp), 32.
register C (MacLisp), 32.
register optimization, 23.
registers, 6.
&rest, 44, 55, 56.
&rest arguments, 39, 44, 55, 56.
RETFROM (InterLisp), 9, 100.
REVERSE, 18.
Richard Fateman, 51, 245.
rings, 76.
Rlisp (PSL), 68.
roots of Common Lisp, 33.
RPLACA, 12, 13, 147.
RPLACD, 12, 140.
RTA (S-1), 46.
RTB (S-1), 46.
runtime typing, 14, 17.
runtime type checking, 14, 17.

S-1 Lisp, 2, 11, 15, 16, 46, 93.
S-1 Mark IIA, 46.
SAIL (Operating System), 25, 29, 33, 110.
search problem, 206.
segmented memory, 76.
SEUS (Language), 10.

shallow binding, 5, 20, 93.
small-benchmark methodology, 3.
small-number-CONS, 27.
small-number scheme, 16.
Smalltalk (Language), 12, 15.
spaghetti stack (InterLisp), 74, 99, 101.
special, 5, 6, 10, 12, 20, 93.
special variables, 6, 20.
special binding, 10, 12, 83.
SPICE Lisp byte codes, 63.
SPICE Lisp (CMU), 58, 63, 76.
stack-allocated number, 16.
stack architecture, 59.
stack buffer (Symbolics), 3, 38, 43.
stack cache, 3, 38, 43.
stack group (ZetaLisp), 38.
stacks, 38.
stack vectors, 55.
Stak (Benchmark), 93.
Stanford Artificial Intelligence Laboratory

(SAIL), 33.
Standard Lisp, 66.
stock hardware, 15.
stop-and-copy (Garbage Collection), 57, 78.
strings, 12, 64, 74.
SUBRCALL, (MacLisp), 182.
SUN II, 70.
symbolic derivative, 171.
Symbolics 3600, 3, 36, 39, 40, 44.
Symbolics 3600 compiler, 39.
Symbolics 3600 data formats, 40.
Symbolics Inc, 3, 34, 36, 39, 40, 44.
Symbolics LM-2, 34.
symbols, 5, 6.
Syslisp (PSL), 66.
systemic quantities vector, 50.

tagged architecture, 14, 58.
tagging, 54, 58, 64.
tags, 14.
tail recursion, 9, 26, 72, 111, 186.
tail recursion removal, 186.
Tak (Benchmark), 12, 24, 30, 42, 61,

81, 93, 99, 105.
Takeuchi, 81.
Takl (Benchmark), 105.
Takr (Benchmark), 61, 110.
TENEX (Operating System), 29.
terminal output, 236.
terminal print, 236.
theorem-proving benchmark, 129.
three operand instructions, 46.
THROW (Lisp primitive), 9, 44, 60, 79, 99.

time-shared machine, 29.
top-of-stack register, 38.
Tprint (Benchmark), 62, 236.
trampolines, 11.
TRANSLINK (Franz), 11, 32, 33, 51.
Traverse (Bennchmark), 153.
Triang (benchmark), 217.
two-dimensional arrays, 218.
type checking facility, 15.
types, 31, 35, 37.

unboxing, 16.
units, 139.
University of California at Berkeley, 51.
University of Utah, 66.
unpleasant programming style, 245.
unsnapping links, 33.
unwinding, 9.
user-controlled paging, 36.
Utah, 66.
UUO, 32.
UUO links, 11.
UUOlinks, 33, 51.

value cell, 6.
value predication, 50.
variable lookup, 20.
variables, 5, 6.
Vax 11/750, 69.
Vax 11/750 Common Lisp, 94.
Vax 11/780, 25, 69.
Vax 8600, 65.
Vax Common Lisp (DEC), 63.
Vax (DEC), 10, 25, 51, 54, 63, 65,

69, 79, 94.
Vax NIL, 2, 11, 15, 94.
Vax Portable Standard Lisp (PSL), 16.
vectors, 12, 48, 52, 59, 64, 71, 74, 78.
Venus (Dec Vax 8600), 65.
VMS operating system (DEC), 63.

WAITS (Operating System), 33.
White, 31.
wholine time, 25.
windows, 236.
word alignment, 4.
working-set, 2, 14, 30.
write-through, 4.

XCT instruction, 32.
Xerox, 73.

ZEROP, 21.
ZetaLisp, 34.

