
�

Abstract

Suppose the entire social and commercial fabric support-
ing the creation of software is changing—changing by be-
coming completely a commons and thereby dropping dra-
matically in cost. How would the world change and how
would we recognize the changes? Software would not be
continually recreated by different organizations, so the
global “efficiency” of software production would increase
dramatically; therefore it would be possible to create value
without waste, experimentation and risk-taking would be-
come affordable—and probably necessary because firms
could not charge for their duplication of infrastructure—,
and the size and complexity of built systems would increase
dramatically, perhaps beyond human comprehension. As
important or more so, the activities of creating software
would become the provenance of people, organizations, and
disciplines who today are mostly considered consumers of
software—there would, in a very real sense, be only a single
software system in existence, continually growing; it would
be an ecology husbanded along by economists, sociologists,
governments, clubs, communities, and herds of disciplines.
New business models would be developed, perhaps at an
alarming rate. How should we design our research to ob-
serve and understand this change? There is some evidence
the change is underway, as the result of the adoption of
open source by companies who are not merely appreciative
receivers of gifts from the evangelizers of open source, but
who are clever thieves re-purposing the ideas and making
up new ones of their own.

Introduction

Sometimes something new happens at a scale that both re-
searchers and practitioners are either unable or unwilling
to observe. An example of this in recent memory has been
the emergence of emergence as a field of study, in the form
of complexity science. For centuries a sort of phenomenon
that is now regard as possibly central to many scientific

Richard P. Gabriel
IBM Research

The Commons as New Economy
& What This Means for Research

disciplines was simply not observed or was considered not
worthy of serious thought.

Researchers in and practitioners of open source� are en-
amored of licensing, tools and their usage, community build-
ing, and how effective and efficient the open-source method-
ology is at producing software. However, something much
larger is going on that could be changing the landscape of
computing and not just adding some knowledge to the dis-
cipline of software engineering.

Over the last 10 years, companies have been contributing
a stupendous amount of software to (let’s call it) the open-
source world. For example, Sun Microsystems recently com-
puted that, using conventional means for assigning a mon-
etary value to source code, it has contributed over $1 billion
in code. IBM and possibly other large corporations are not
far behind. Of particular interest is that Sun has made a de-
cision to open-source all of its software, and it appears they
are well on their way to doing that. At the same time, Sun is
not placing all of its revenue expectations on their hardware:
they expect to make money with their software.

Sun: A Case Study (Brief Overview)

Sun started in 1982 as a company based on open standards
and commodities: BSD Unix, Motorola 68000 processors,
and TCP/IP. In the late 1990s it began to experiment with
open-source ideas and true open source: Jini (not true open
source, but an interesting experiment in open-source con-
cepts and practices combined with strategies for creating
markets), Netbeans, Juxta, and OpenOffice were early ex-
periments, followed by Glassfish, Grid Engine, OpenSparc,
OpenSolaris, Open Media Commons, and most recently Java.
Throw in Java.net and an interesting landscape emerges.
Sun is clearly experimenting with the whole concept of the
commons. OpenSparc is a hardware design that was licensed
under an open-source license for the purpose of creating
markets; Open Media Commons is primarily a DRM open-
source project, but it is also looking at the question of what
intellectual property rights means in the 21st century. Java.
net is a sort of meta community aimed at creating markets

� I use this term for simplicity and to avoid politics.

dreamsongs.com

us.ibm.com{rpg@

�

around Java. Solaris and Java are considered Sun’s software
crown jewels.

Throughout this experimental era at Sun—which is still
going on—there were emphases on governance and busi-
ness models.

Sun is pushing four open-source-related business strat-
egies:

to increase volume by engaging software developers
and lowering the barriers to adoption
to share development with outside developers and es-
tablished open-source projects for software required
by Sun’s software stacks
to address growing markets whose governments or pro-
clivities demand open source, such as Brazil, parts of
the European Union, Russia, India, and China
to disrupt locked-in markets by providing open-source
alternatives

Sun makes an interesting set of observations about how
the point has changed over time where monetization of
software happens. In the 1970s, software was primarily
part of a complete hardware package. People would buy a
complete system—hardware and software. In many cases,
hardware companies would provide the source code for
their customers to customize—and nothing was considered
unusual about this.

During the two decades from 1980 to 2000, hardware
companies started to unbundle their software, and soft-
ware companies sprang up to sell software to do all sorts
of things, including operating systems. What these two
periods had in common was that software was monetized
at the point of acquisition. And it seemed at the time there
was no choice: you wanted to use something, so you needed
to buy it first.

With open source and the right business models, this can
change, and that change started in the early 2000s. Open
source is typically free to use—that is, no cost. However,
there are auxiliary things companies and in some cases in-
dividuals are willing or eager to pay for: support and main-
tenance, subscription for timely updates and bug fixes, in-
demnification from liability, and patent protection. In these
cases, monetization can occur when the final product is
deployed. That is, in such cases it costs nothing to explore
an idea for a product to the point of putting it completely
together for sale or distribution. Then, if the producer wishes,
one or several of these services can be purchased.

By delaying some of the costs of coming up with new
products and possibly new companies, likely many more
new ideas can be explored considered over the entire market.
The barriers for experimentation are very low.

The full repertoire of business models Sun has identified
are as follows:

subscription (as described above) including indemni-
fication and patent protection by extending a compa-

•

•

•

•

•

ny’s umbrella of intellectual property over parties who
subscribe
dual license, in which newer versions of the code are
sold and older ones are open source
stewardship, in which a standard is used to attract de-
velopers using the standard and to whom other prod-
ucts are services are sold
embedded, in which the code is part of something else—
usually hardware—that is sold
consulting, in which a person’s or company’s expertise
in particular source code base is sold as, typically, heads-
down programming services
hosting, in which services provided by open-source soft-
ware is running on servers and access to the running
services are sold or other revenue streams are attached
to the running code (like advertisements)
training and education—of the source base and also of
open-source methodologies

Sun open-source theoreticians view these observations
as implying a virtuous cycle in which by finding a place for
added value in code in the commons, a company (or person)
can create a monetization point without having to invest
alone in a large code base, and thereby produce a product
or service at lower overall cost.

What This Means for Software

Suppose that Sun is not an isolated situation and that com-
panies and other organizations (including individuals) are
preparing to alter their business and software development
models to be based on the Sun-described virtuous cycle. How
would the entire enterprise of producing software change
and what would this mean for software engineering?

Let’s paint the picture. The vast majority of software
would be in the commons and available for use. Nothing
much would be proprietary. There would be pressure from
the customer base for there to be some unifications or sim-
plifications. For example, why would there need to be mul-
tiple operating systems aside from the needs of different
scales, real-time, and distributed systems (for example)?
On the other side, finding new value might cause pressure
on firms to fork source bases to create platforms or jump-
ing off points for entire categories of new sources of value.
How would this balance play out?

Because the barriers to entry to almost any endeavor
would be so low, there will be many more players—including
small firms, individuals—able to be factors in any business
area. With more players there would be more opportunities
for new ideas and innovations. How will these play out in
the market? Will, perhaps, firms try to become repositories
of intellectual property in order to offer the best indemnifi-
cation? Will other entities like private universities or pure
research labs become significant players because they can
offer a potent portfolio of patents to use to protect their cli-

•

•

•

•

•

•

�

ents? Looking at large portfolios such as owned by IBM or
Microsoft, it would seem that they would continue to domi-
nate; however, in new or niche areas, small organizations or
even individuals could hold the key patents.

Some obvious considerations immediately come up. What
about licensing? At present large systems are put together
from subsystems (to pick a term) licensed under different
licenses. What is not permitted is to be able to mix pieces
from differently licensed source bases. Will there be pres-
sure to put all code under the same license or will the pres-
sure be the other way—to create new licenses for special-
ized purposes?

What This Means for Software Engineering

Because few companies would “own” an entire system or ap-
plication area, there could be some pressure on code bases
to drift regarding APIs, protocols, data formats, etc. And if
so, where would the countermanding pressure come from?
Would standards bodies handle it, would governance struc-
tures like the Apache Foundation or the IETF be created?
Or would firms spring up to define application or system
structure as was done with the personal computer in the
early 1980s. In that case, a set of design rules were set up
by IBM stating what the components of a PC were and how
they interacted. [1] This enabled markets to form around the
different components and the nature of design in computer
systems changed. Today this way of looking at design has
spawned a new approach to software engineering problems:
economics-driven software engineering.

Software and computing education would change be-
cause all the source code would be available for study (and
even improvement as part of the teaching/learning process).
In this way, developers would be better educated than they
have ever been before.

Programming would become less a matter of cleverness
and invention, and more a process of finding existing source
code that’s close and either adapting or adapting to it. Li-
censing would either help or hinder this.

With pressure lessened to build everything from scratch,
it would be possible to construct larger and larger systems
with achievable team sizes. This would bring out the issues
and challenges associated with ultra-large-scale systems.�
To quote from the call for position papers for a workshop
on this topic [2, 3]:

In a nutshell, radical increases in scale and com-
plexity will demand new technologies for and ap-
proaches to all aspects of system conception, defini-
tion, development, deployment, use, maintenance,
evolution, and regulation. If the software systems
that we focus on today are likened to buildings or

� This is the topic of a workshop I’m leading on Tuesday at ICSE.

individual infrastructure systems, then ULS systems
are more akin to cities or networks of cities. Like cit-
ies, they will have complex individual nodes (akin to
buildings and infrastructure systems), so we must
continue to improve traditional technologies and
methods; but they will also exhibit organization and
require technology and approaches fundamentally
different than those that are appropriate at the node
level. The software elements of ULS systems pres-
ent especially daunting challenges. Developing the
required technologies and approaches in turn will
require basic and applied research significantly dif-
ferent that that which we have pursued in the past.
Enabling the development of ULS systems—and
their software elements, in particular—will require
new ideas drawing on many disciplines, including
computer science and software engineering but
also such disciplines as economics, city planning,
and anthropology.

The switch from proprietary to commons-based software
would hasten the age of ultra-large-scale systems which
will differ qualitatively because of their massive scale. If
that happens, the inadequacies of our tools including pro-
gramming methodologies and languages would be placed
in high relief.

What This Means for Research

The habit of research in computing is to look deeply and
narrowly at questions. In a sense, researchers loves puzzles.
Gregory Treverton wrote this about puzzles versus mysteries
in a paper on/for the intelligence community [4]:

Now, intelligence is in the information business, not
just the secrets business, a sea-change for the profes-
sion. In the circumstances of the information age, it
is time for the intelligence community to “split the
franchise” between puzzles and mysteries. Puzzles
have particular solutions, if only we had access to
the necessary (secret) information. Puzzles were the
intelligence community’s stock-in-trade during the
Cold War: how many missiles does the Soviet Union
have? How accurate are they? What is Iraq’s order
of battle? The opposites of puzzles are “mysteries,”
questions that have no definitive answer even in
principle. Will North Korea strike a new nuclear
bargain? Will China’s Communist Party cede do-
mestic primacy? When and where will Al Qaida
next attack? No one knows the answers to these

�

questions. The mystery can only be illuminated; it
cannot be “solved.”

Finding evidence of the sea-change from proprietary
software to commons-based software in the commercial
world is part of a mystery, not a puzzle, and so our tradi-
tional methods might not hold up well. But certainly study-
ing the engineering methods open-source projects use will
not illuminate the larger context—that context being how
the entire enterprise of creating software changes when
corporations change their business models to embrace the
commons. The concerns of firms are not the same as the
concerns of someone using a bug-tracking tool, editing code
with Emacs, and automating a tricky part of the testing
process. Moreover, because bottom-line concerns dominate
sticking to certain ideals of engineering, for example, we
are likely to see ideas we in the software engineering com-
munity have not thought of.

Here is a small example, again from the Sun case study.
A Japanese automobile manufacturer contacted Sun’s Open
Source Group to learn about open-source. The group was
responsible for the creation of the bulk of the company’s
applications. They claimed to not have a single coder in
their direct employ, but outsourced—primarily to India.
They were concerned that the Indian companies they were
using were not as adept with interpreting the specs they
were given as made financial sense for the car company. So
the VP of the group was interested whether the Sun Open
Source Group could help them figure out how to impose an
open-source methodology (but not reality) on the Indian
outsourcing companies so that the applications group could
monitor progress, run the nightly builds, observe email and
wiki-based communications, and etc, to both judge how the
project was going and to correct it on the fly, perhaps by us-
ing open-source techniques.

Not a line of code would be released to the outside world;
there would be no license. It would be simply a management
tool. Researchers who would notice and report on such inno-
vations and activities would come from a business school, or
would be economists or perhaps anthropologists. Therefore
what I see required is a broader view, a more interdisciplin-
ary view—this is in concert with the conclusions reached by
the authors of the ultra-large-scale systems report.

Another part of the sea change is that software research-
ers would be able to do real science on naturally occurring
software, systems, frameworks, etc. For example, it would
start to make sense to get a handle on how many times a
piece of data is transcoded on its way from a database to a
client screen somewhere, a number that could be very high
particularly if the system doing the overall transmission
were made of a number of separately developed frameworks.
Today, gathering such information requires a special rela-

tionship with a corporation—a relationship that I suspect
is quite rare.

Conclusions

One can wonder whether Sun’s directions are predictive
or iconoclastic. If the latter, then Sun is merely a curiosity;
but if the former, it behooves those of us who straddle the
research / practitioner boundary to figure out a sort of re-
search program that will help us notice the changes in order
to record and study them.

Author Bio

Richard P. Gabriel was until recently one of Sun’s open-
source experts and a member of its Open Source Group. In
1998 he accepted the assignment from Bill Joy, one of Sun’s
founders, to make Sun an open-source company. From 1998
until 2004 he did just that, culminating in the book Innova-
tion Happens Elsewhere with his colleague Ron Goldman,
the formation of the Open Source Group, and the announce-
ment by Sun’s CEO that Sun would open-source all of its
software. After spending 2 years in Sun Labs doing early
studies of ultra-large-scale software systems, he returned
briefly to the Open Source Group before moving on.

References

[1] Baldwin, C. & Clark, K. Design Rules: The Power of
Modularity. MIT Press, 1999.

[2] http://www.cs.virginia.edu/~sullivan/ULS1/

[3] The Software Engineering Institute (SEI), “The Soft-
ware Challenge of the Future: Ultra-Large-Scale Sys-
tems,” June 2006, http://www.sei.cmu.edu/uls/.

[4] Treverton, Gregory F. Reshaping Intelligence to Share
with “Ourselves” Commentary No. 82, Canadian Se-
curity Intelligence Service, July 2003.

