

Queue-based Multi-processing Lisp

Richard P. Gabriel
John McCarthy

Stanford University

1. Introduction

As the need for high-speed computers increases, the need for multi-processors will be
become more apparent. One of the major stumbling blocks to the development of useful
multi-processors has been the lack of a good multi-processing language—one which is both
powerful and understandable to programmers.

Among the most compute-intensive programs are artificial intelligence (AI) programs,
and researchers hope that the potential degree of parallelism in AI programs is higher than
in many other applications. In this paper we propose multi-processing extensions to Lisp.
Unlike other proposed multi-processing Lisps, this one provides only a few very powerful
and intuitive primitives rather than a number of parallel variants of familiar constructs.

Support for this research was provided by the Defense Advanced Research Projects Agency under

Contract DARPA/N00039-82-C-0250

1

§ 2 Design Goals

2. Design Goals

1. Because Lisp manipulates pointers, this Lisp dialect will run in a shared-memory architec-
ture;

2. Because any real multi-processor will have only a finite number of CPU’s, and because
the cost of maintaining a process along with its communications channels will not be zero,
there must be a means to limit the degree of multi-processing at runtime;

3. Only minimal extensions to Lisp should be made to help programmers use the new con-
structs;

4. Ordinary Lisp constructs should take on new meanings in the multi-processing setting,
where appropriate, rather than proliferating new constructs.

5. The constructs should all work in a uni-processing setting (for example, it should be
possible to set the degree of multi-processing to 1 as outlined in point 2); and

3. This Paper

This paper presents the added and re-interpreted Lisp constructs, and examples of
how to use them are shown. A simulator for the language has been written and used
to obtain performance estimates on sample problems. This simulator and some of the
problems are be briefly presented.

4. QLET

The obvious choice for a multi-processing primitive for Lisp is one which evaluates
arguments to a lambda-form in parallel. QLET serves this purpose. Its form is:

(QLET pred ((x1arg1)
...

(xn argn))
. body)

Pred is a predicate that is evaluated before any other action regarding this form is
taken; it is assumed to evaluate to one of: (), EAGER, or something else.

If pred evaluates to (), then the QLET acts exactly as a LET. That is, the arguments
arg1 . . . argn are evaluated as usual and their values bound to x1 . . . xn, respectively.

2

§ 4 QLET

If pred evaluates to non-(), then the QLET will cause some multi-processing to hap-
pen. Assume pred returns something other than () or EAGER. Then processes are
spawned, one for each argi. The process evaluating the QLET goes into a wait state:
When all of the values arg1 . . . argn are available, their values are bound to x1 . . . xn, re-
spectively, and each form in the list of forms, body, is evaluated.

Assume pred returns EAGER. Then QLET acts exactly as above, except that the
process evaluating the QLET does not wait: It proceeds to evaluate the forms in body.
But if in evaluating the forms in body the value of one of the arguments is required, argi,
the process evaluating the QLET waits. If that value has been supplied already, it is
simply used.

To implement EAGER binding, the value of the EAGER variables could be set to
an ‘empty’ value, which could either be an empty memory location, like that supported
by the Denelcor HEP [Smith 1978], or a Lisp object with a tag field indicating an empty
or pending object. At worst, every use of a value would have to check for a full pointer.

We will refer to this style of parallelism as QLET application.

4.1 Queue-based

The Lisp is described as ‘queue-based’ because the model of computation is that
whenever a process is spawned, it is placed on a global queue of processes. A scheduler
then assigns that process to some processor. Each processor is assumed to be able to run
any number of processes, much as a timesharing system does, so that regardless of the
number of processes spawned, progress will be made. We will call a process running on a
processor a job.

The ideal situation is that the number of processes active at any one time will be
roughly equal to the number of physical processors available.1

The idea behind pred, then, is that at runtime it is desirable to control the number
of processes spawned. Simulations show a marked dropoff in total performance as the

1 Strictly speaking this isn’t true. Simulations show that the ideal situation depends on the length

of time it takes to create a process and the amount of waiting the average process needs to do. If the

creation time is short, but realistic, and if there is a lot of waiting for values, then it is better to use some

of the waiting time creating active processes, so that no processor will be idle. The ideal situation has no

physical processor idle.

3

§ 4 QLET

number of processes running on each processor increases, assuming that process creation
time is non-zero.

4.2 Example QLET

Here is a simple example of the use of QLET. The point of this piece of code is to
apply the function CRUNCH to the nth

1 element of the list L1, the nth
2 element of the

list L2, and the nth
3 element of the list L3.

(QLET T ((X
(DO ((L L1 (CDR L))

(I 1 (1+ I))
((= I N1) (CAR L)))))

(Y
(DO ((L L2 (CDR L))

(I 1 (1+ I))
((= I N2) (CAR L)))))

(Z
(DO ((L L3 (CDR L))

(I 1 (1+ I))
((= I N3) (CAR L))))))

(CRUNCH X Y Z))

4.3 Functions

You might ask: Can a function, like CRUNCH, be defined to be ‘parallel’ so that
expressions like the QLET above don’t appear in code? The answer is no.

The reasons are complex, but the primary reason is lexicality. Suppose it were possible
to define a function so that a call to that function would cause the arguments to it to be
evaluated in parallel. That is, a form like (f a1 . . . an) would cause each argument, ai,
to be evaluated concurrently with the evaluation of the others. In this case, to be safe,
one would only be able to invoke f on arguments whose evaluations were independent of
each other. Because the definition of a function can be, textually, far away from some
of its invocations, the programmer would not know on seeing an invocation of a function
whether the arguments would be evaluated in parallel.

Using our formulation, one could define a macro, PCALL, such that:

4

§ 4 QLET

(PCALL f a1 . . . an)

would accomplish parallel argument evaluation. Of course, this is just a macro for a QLET

application.

4.4 A Real Example

This is an example of a simple, but real, Lisp function. It performs the function of
the traditional Lisp function, SUBST, but in parallel:

(DEFUN QSUBST (X Y Z)
(COND ((EQ Y Z) X)

((ATOM Z) Z)
(T
(QLET T ((Q (QSUBST X Y (CAR Z)))

(R (QSUBST X Y (CDR Z))))
(CONS Q R)))))

5. QLAMBDA Closures

In some Lisps (Common Lisp, for example) it is possible to create closures: function-
like objects that capture their definition-time environment. When a closure is applied,
that environment is re-established.

QLET application, as we saw above, is a good means for expressing parallelism that
has the regularity of, for example, an underlying data structure. Because a closure is
already a lot like a separate process, it could be used as a means for expressing less regular
parallel computations.

(QLAMBDA pred (lambda-list) . body)

creates a closure. Pred is a predicate that is evaluated before any other action regarding
this form is taken. It is assumed to evaluate to either (), EAGER, or something else.
If pred evaluates to (), then the QLAMBDA acts exactly as a LAMBDA. That is, a
closure is created; applying this closure is exactly the same as applying a normal closure.

5

§ 5 QLAMBDA Closures

If pred evaluates to something other than EAGER, the QLAMBDA creates a closure
that, when applied, is run as a separate process. Creating the closure by evaluating the
QLAMBDA expression is called spawning; the process that evaluates the QLAMBDA

is called the spawning process; and the process that is created by the QLAMBDA is called
the spawned process. When a closure running as a separate process is applied, the separate
process is started, the arguments are evaluated by the spawning process, and a message
is sent to the spawned process containing the evaluated arguments and a return address.
The spawned process does the appropriate lambda-binding, evaluates its body, and finally
returns the results to the spawning process. We call a closure that will run or is running
in its own process a process closure. In short, the expression (QLAMBDA non-() . . .)
returns a process closure as its value.

If pred evaluates to EAGER, then a closure is created which is immediately spawned.
It lambda-binds empty binding cells as described earlier, and evaluation of its body starts
immediately. When an argument is needed, the process either has had it supplied or it
blocks. Similarly, if the process completes before the return address has been supplied, the
process blocks.

This curious method of evaluation will be used surprisingly to write a parallel Y

function!

5.1 Value-Requiring Situations

Suppose there are no further rules for the timing of evaluations than those given, along
with their obvious implications; have we defined a useful set of primitives?

No. Consider the situation:

(PROGN (F X) (G Y))

If F happens to be bound to a process closure, then the process evaluating the PROGN

will spawn off the process to evaluate (F X), wait for the result, and then move on to
evaluate (G Y), throwing away the value F returned. If this is the case, it is plain that
there is not much of a reason to have process closures.

Therefore we make the following behavioral requirement: If a process closure is called
in a value-requiring context, the calling process waits; and if a process closure is called in

6

§ 5 QLAMBDA Closures

a value-ignoring situation, the caller does not wait for the result, and the callee is given a
void return address.

For example, given the following code:

(LET ((F (QLAMBDA T (Y)(PRINT (∗ Y Y)))))
(F 7)
(PRINT (∗ 6 6)))

there is no a priori way to know whether you will see 49 printed before or after 36.2

To increase the readability of code we introduce two forms, which could be defined as
macros, to guarantee a form will appear in a value-requiring or in a value-ignoring position.

(WAIT form)

will evaluate form and wait for the result;

(NO-WAIT form)

will evaluate form and not wait for the result.

For example,

(PROGN

(WAIT form1)
form2)

will wait for form1 to complete.

2 We can assume that there is a single print routine that guarantees that when something is printed,

no other print request interferes with it. Thus, we will not see 43 and then 96 printed in this example.

7

§ 5 QLAMBDA Closures

5.2 Applying a Process Closure

Process closures can be passed as arguments and returned as values. Therefore, a
process closure can be in the middle of evaluating its body given a set of arguments when
it is applied by another process. Similarly, a process can apply a process closure in a value-
ignoring position and then immediately apply the same process closure with a different set
of arguments.

Each process closure has a queue for arguments and return addresses. When a process
closure is applied, the new set of arguments and the return address is placed on this queue.
The body of the process closure is evaluated to completion before the set of arguments at
the head of the queue is processed.

We will call this property integrity, because a process closure is not copied or disrupted
from evaluating its body with a set of arguments: Multiple applications of the same process
closure will not create multiple copies of it.

6. CATCH and QCATCH

So far we have discussed methods for spawning processes and communicating results.
Are there any ways to kill processes? Yes, there is one basic method, and it is based on
an intuitively similar, already-existing mechanism in many Lisps.

CATCH and THROW are a way to do non-local, dynamic exits within Lisp. The
idea is that if a computation is surrounded by a CATCH, then a THROW will force
return from that CATCH with a specified value, terminating any intermediate computa-
tions.

(CATCH tag form)

will evaluate form. If form returns with a value, the value of the CATCH expression is
the value of the form. If the evaluation of form causes the form

(THROW tag value)

to be evaluated, then CATCH is exited immediately with the value value. THROW

causes all special bindings done between the CATCH and the THROW to revert. If

8

§ 6 CATCH and QCATCH

there are several CATCH’s, the THROW returns from the CATCH dynamically closest
with a tag EQ to the THROW tag.

6.1 CATCH

In a multi-processing setting, when a CATCH returns a value, all processes that were
spawned as part of the evaluation of the CATCH are killed at that time.

Consider:

(CATCH ’QUIT
(QLET T ((X

(DO ((L L1 (CDR L)))
((NULL L) ’NEITHER)
(COND ((P (CAR L))

(THROW ’QUIT L1)))))
(Y
(DO ((L L2 (CDR L)))

((NULL L) ’NEITHER)
(COND ((P (CAR L))
(THROW ’QUIT L2))))))

X))

This piece of code will scan down L1 and L2 looking for an element that satisfies P. When
such an element is found, the list that contains that element is returned, and the other
process is killed, because the THROW causes the CATCH to exit with a value. If both
lists terminate without such an element being found, the atom NEITHER is returned.

Note that if L1 and L2 are both circular lists, but one of them is guaranteed to contain
an element satisfying P, the entire process terminates.

If a process closure was spawned beneath a CATCH and if that CATCH returns
while that process closure is running, that process closure will be killed when the CATCH

returns.

6.2 QCATCH

(QCATCH tag form)

9

§ 6 CATCH and QCATCH

QCATCH is similar to CATCH, but if the form returns with a value (no THROW

occurs) and there are other processes still active, QCATCH will wait until they all finish.
The value of the QCATCH is the value of form. For there to be any processes active
when form returns, each one had to have been applied in a value-ignoring setting, and
therefore all of the values of the outstanding processes will be duly ignored.

If a THROW causes the QCATCH to exit with a value, the QCATCH kills all
processes spawned beneath it.

We will define another macro to simplify code. Suppose we want to spawn the evalu-
ation of some form as a separate process. Here is one way to do that:

((LAMBDA (F)
(F) T)

(QLAMBDA T () form))

A second way is:

(FUNCALL (QLAMBDA T () form))

We will chose the latter as the definition of:

(SPAWN form)

Notice that SPAWN combines spawning and application.

Here are a pair of functions which work together to define a parallel EQUAL function
on binary trees:

(DEFUN EQUAL (X Y)
(QCATCH ’EQUAL

(EQUAL-1 X Y)))

EQUAL uses an auxiliary function, EQUAL-1:

10

§ 6 CATCH and QCATCH

(DEFUN EQUAL-1 (X Y)
(COND ((EQ X Y))

((OR (ATOM X)
(ATOM Y))

(THROW ’EQUAL ()))
(T
(SPAWN (EQUAL-1 (CAR X)(CAR Y)))
(SPAWN (EQUAL-1 (CDR X)(CDR Y)))
T)))

The idea is to spawn off processes that examine parts of the trees independently. If
the trees are not equal, a THROW will return a () and kill the computation. If the trees
are equal, no THROW will ever occur. In this case, the main process will return T to the
QCATCH in EQUAL. This QCATCH will then wait until all of the other processes
die off; finally it will return this T.

6.3 THROW

THROW will throw a value to the CATCH above it, and processes will be killed
where applicable. The question is, when a THROW is seen, exactly which CATCH is
thrown to and exactly which processes will be killed?

The processes that will be killed are precisely those processes spawned beneath the
CATCH that receives the THROW and those spawned by processes spawned beneath
those, and so on.

The question boils down to which CATCH is thrown to. To determine that CATCH,
find the process in which the THROW is evaluated and look up the process-creation chain
to find the first matching tag.

If you see a code fragment like:

(QLAMBDA T () (THROW tag value))

the THROW is evaluated within the QLAMBDA process closure, so look at the process
in which the QLAMBDA is created to start searching for the proper CATCH. Thus,
if you apply a process closure with a THROW in it, the THROW will be to the first

11

§ 6 CATCH and QCATCH

CATCH with a matching tag in the process chain that the QLAMBDA was created in,
not in the current process chain.

Thus we say that THROW throws dynamically by creation.

7. UNWIND-PROTECT

When THROW is used to terminate a computation, there may be other actions that
need to be performed before the context is destroyed. For instance, suppose that some files
have been opened and their streams lambda-bound. If the bindings are lost, the files will
remain open until the next garbage collection. There must be a way to gracefully close
these files when a THROW occurs. The construct to do that is UNWIND-PROTECT.

(UNWIND-PROTECT form cleanup)

will evaluate form. When form returns, cleanup is evaluated. If form causes a THROW

to be evaluated, cleanup will be performed anyway. Here is a typical use:

(LET ((F (OPEN “FOO.BAR”)))
(UNWIND-PROTECT (READ-SOME-STUFF) (CLOSE F)))

In a multi-processing setting, when a cleanup form needs to be evaluated because a
THROW occurred, the process that contains the UNWIND-PROTECT is retained to
evaluate all of the cleanup forms for that process before it is killed. The process is placed
in an un-killable state, and if a further THROW occurs, it has no effect until the current
cleanup forms have been completed,.

Thus, if control ever enters an UNWIND-PROTECT, it is guaranteed that the
cleanup form will be evaluated. Dynamically nested UNWIND-PROTECT’s will have
their cleanup forms evaluated from the inside-out, even if a THROW has occurred.

To be more explicit, recall that the CATCH that receives the value thrown by a
THROW performs the kill operations. The UNWIND-PROTECT cleanup forms are
evaluated in un-killable states by the appropriate CATCH before any kill operations are
performed. This means that the process structure below that CATCH is left in tact until
the UNWIND-PROTECT cleanup forms have completed.

12

§ 7 UNWIND-PROTECT

7.1 Other Primitives

One pair of primitives is useful for controlling the operation of the processes as they
are running; they are SUSPEND-PROCESS and RESUME-PROCESS. The former
takes a process closure and puts it in a wait state. This state cannot be interrupted,
except by a RESUME-PROCESS, which will resume this process. This is useful if
some controlling process wishes to pause some processes in order to favor some process
more likely to succeed than these.

A use for SUSPEND-PROCESS is to implement a general locking mechanism,
which will be described later.

7.2 An Unacceptable Alternative

There is another approach that could have been taken to the semantics of:

(QLAMBDA pred (lambda-list) . body)

Namely, we could have stated that the arguments to a process closure could trickle in,
some from one source and some from another. Because a process closure could then need
to wait for arguments from several sources, we could use this behavior as a means to achieve
the effects of SUSPEND-PROCESS. That is, we could apply a process closure which
requires one argument to no arguments; the process closure would then need to wait for
an argument to be supplied. Because we would not supply that argument until we wanted
the process to continue, supplying the argument would achieve RESUME-PROCESS.

This would be quite elegant, but for the fact that process closures would then be
able to get arguments from anywhere chaotically. We would have to abandon the ability
to know the order of variable-value pairing in the lambda-binding that occurs in process
closures. For instance, if we had a process closure that took two arguments, one a number
and the other a list, and if one argument were to be supplied by one process and the
second by another, there would be no way to cause one argument to arrive at the process
closure before the other, and hence one would not be sure that the number paired with
the variable that was intended to have a numeric value.

One could use keyword arguments [Steele 1984] in this case, but that would not solve
all the problems with this scheme. How could &REST arguments be handled? There
would be no way to know when all of the arguments to the process closure had been

13

§ 7 UNWIND-PROTECT

supplied. Suppose that a process wanted to send 5 values to a process closure that needed
exactly 5 arguments; if some other process had sent 2 to that process closure already, how
could one require that the first 3 of the 5 sent would not be bundled with the 2 already
sent to supply the process closure with random arguments?

In short, this alternative is unacceptable.

8. The Rest of the Paper

This completes the definition of the extensions to Lisp. Although these primitives form
a complete set—any concurrent algorithm can be programmed with only these primitives
along with the underlying Lisp—a real implementation of these extensions would supply
further convenient functions, such as an efficient locking mechanism.

The remainder of this paper will describe some of the tricky things that can be done in
this language, and it will present some performance studies done with a simple simulator.

9. Resource Management

We’ve mentioned that we assume a shared-memory Lisp, which implies that many
processes can be accessing and updating a single data structure at the same time. In
this section we show how to protect these data structures with critical sections to allow
consistent updates and accesses.

The key is closures. We spawn a process closure which is to be used as the sole
manager of a given resource, and we conduct all transactions through that closure. We
illustrate the method with an example.

Suppose we have an application where we will need to know for very many n whether
∃ i s.t. n = Fib(i), where Fib is the Fibonacci function. We will call this predicate Fib-p.
Suppose further that we want to keep a global table of all of the Fibonacci argument/value
pairs known, so that Fib-p will be a table lookup whenever possible. We can use a variable,
∗V∗, which has a pair—a cons cell—as its value with the CAR being i and the CDR

being n, and n = Fib(i), such that this is the largest i in the table. We imagine filling up
this table as needed, using it as a cache, but the variable ∗V∗ is used in a quick test to
decide whether to use the table rather than Fibonacci function to decide Fib-p.

We will ignore the details of the table manipulation and discuss only the variable ∗V∗.
When a process wants to find out the highest Fibonacci number in the table, it simply will

14

§ 9 Resource Management

do (CDR ∗V∗). If a process wants to find out the pair (i . Fib(i)), it had better do this
indivisibly because some other processes might updating ∗V∗ concurrently.

We assume that we do not want to CONS another pair to update ∗V∗—we will
destructively update the pair. Thus, we do not want to say:

. . .

(SETQ ∗V∗ (CONS arg val))
. . .

Here is some code to set up the ∗V∗ handler:

(SETQ ∗V-HANDLER∗ (QLAMBDA T (CODE) (CODE *V*)))

The idea is to pass this process closure a second closure which will perform the desired
operations on its lone argument; the ∗V∗ handler passes ∗V∗ to the supplied closure.

Here is a code fragment to set up two variables, I and J, which will receive the values
of the components of ∗V∗, along with the code to get those values:

(LET ((I ())(J ()))
(∗V-HANDLER∗ (LAMBDA (V)

(SETQ I (CAR V))
(SETQ J (CDR V))))

. . .)

Because the process closure will evaluate its body without creating any other copies
of itself, and because all updates to ∗V∗ will go through ∗V-HANDLER∗, I and J will
be such that J = Fib(I).

The code to update the value of ∗V∗ would be:

. . .

(∗V-HANDLER∗ (LAMBDA (V)
(SETF (CAR V) arg)
(SETF (CDR V) val)))

. . .

15

§ 9 Resource Management

If the process updating ∗V∗ does not need to wait for the update, this call can be put
in a value-ignoring position.

9.1 Fine Points

If the process closure that controls a resource is created outside of any CATCH or
QCATCH that might be used to terminate subordinate process closures, then once the
process closure has been invoked, it will be completed. If this process closure is busy when
it is invoked by some process, then even if the invoking process is killed, the invocation
will proceed. Thus requests on a resource controlled by this process closure are always
completed. Another way to guarantee that a request happens is to put it inside of an
UNWIND-PROTECT.

10. Locks

When we discussed SUSPEND-PROCESS and RESUME-PROCESS we men-
tioned that a general locking mechanism could be implemented using SUSPEND-PRO-

CESS. Here is the code for this example:

(DEFMACRO GET-LOCK ()
’(CATCH ’FOO

(PROGN

(LOCK
(QLAMBDA T (RES)(THROW ’FOO RES)))

(SUSPEND-PROCESS))))

When SUSPEND-PROCESS is called with no arguments, it puts the currently running
job (itself) into a wait state.

1 (LET ((LOCK
2 (QLAMBDA T (RETURNER)
3 (CATCH LOCKTAG
4 (LET ((RES (QLAMBDA T () (THROW ’LOCKTAG T))))
5 (RETURNER RES)
6 (SUSPEND-PROCESS))))))

16

§ 10 Locks

7 (QLET T ((X
8 (LET ((OWNED-LOCK (GET-LOCK)))
9 (DO ((I 10 (1− I)))

10 ((= I 0)
11 (OWNED-LOCK) 7))))
12 (Y
13 (LET ((OWNED-LOCK (GET-LOCK)))
14 (DO ((I 10 (1− I)))
15 ((= I 0)
16 (OWNED-LOCK) 8))))))
17 (LIST X Y))

The idea is to evaluate a GET-LOCK form, which in this case is a macro, that will
return when the lock is available; at that point, the process that called the GET-LOCK
form will have control of the lock and, hence, the resource in question. GET-LOCK returns
a function that is invoked to release the lock.

Lines 7–17 are the test of the locking mechanism: The QLET on line 7 spawns two
processes; the first is the LET on lines 8–11; the second is the LET on lines 13–16. Each
process will attempt to grab the lock, and when a process has that lock, it will count down
from 10, release the lock, and return a number—either 7 or 8. The two numbers are put
into a list that is the return value for the test program.

As we mentioned earlier, when a process closure is evaluating its body given a set of
arguments, it cannot be disrupted—no other call to that process closure can occur until
the previous calls are complete. To implement a lock, then, we must produce a process
closure that will return an unlocking function, but which will not actually return!

GET-LOCK sets up a CATCH and calls the LOCK function with a process closure
that will return from this CATCH. The value that the process closure throws will be the
function we use to return the lock. We call LOCK in a value-ignoring position so that when
the lock is finally released, LOCK will not try to return a value to the process evaluating
the GET-LOCK form. The SUSPEND-PROCESS application will cause the process
evaluating the GET-LOCK form to wait for the THROW that will happen when LOCK
sends back the unlocking function.

LOCK takes a function, the RETURNER function, that will return the unlocking

17

§ 10 Locks

function. LOCK binds RES to a process closure that throws to the CATCH on line 3.
This process closure is the function that we will apply to return the lock. The RE-
TURNER function is applied to RES, which throws RES to the catch frame with tag
FOO. Because (RETURNER RES) appears in a value-ignoring position, this process clo-
sure is applied with no intent to return a value. Evaluation in LOCK proceeds with the
call to SUSPEND-PROCESS.

The effect is that the process closure that will throw to LOCKTAG—and which will
eventually cause LOCK to complete—is thrown back to the caller of GET-LOCK, but
LOCK does not complete. No other call to LOCK will begin to execute until the THROW

to LOCKTAG occurs—that is, when the function, OWNED-LOCK, is applied.

Hence, exactly one process at a time will execute with this lock.

The key to understanding this code is to see that when a THROW occurs, it searches
up the process-creation chain that reflects dynamically scoped CATCH’s. Because we
spawned the process closure in GET-LOCK beneath the CATCH there, the THROW

in the process closure bound to RETURNER will throw to that CATCH, ignoring the
one in LOCK. Similarly, the THROW that RES performs was created underneath the
CATCH in LOCK, and so the process closure that throws to LOCKTAG returns from
the CATCH in LOCK.

10.1 Reality.

As mentioned earlier, a real implementation of this language would supply an efficient
locking mechanism. We have tried to keep the number of primitives down to see what
would constitute a minimum language.

11. Killing Processes

We’ve seen that a process can commit suicide, but is there any way to kill another
process? Yes; the idea is to force a process to commit suicide. Naturally, everything must
be set up correctly.

We’ll show a simple example of this ‘bomb’ technique.

Here is the entire code for this example:

1 (DEFUN TEST ()
2 (LET ((BOMBS ()))

18

§ 11 Killing Processes

3 (LET ((BOMB-HANDLER
4 (QLAMBDA T (TYPE ID MESSAGE)
5 (COND ((EQ TYPE ’BOMB)
6 (PRINT ‘(BOMB FOR ,ID))
7 (PUSH ‘(,ID . ,MESSAGE) BOMBS))
8 ((EQ TYPE ’KILL)
9 (PRINT ‘(KILL FOR ,ID))

10 (FUNCALL

11 (CDR (ASSQ ID BOMBS)))
12 T)))))
13 (QLET ’EAGER ((X
14 (CATCH ’QUIT (TESTER BOMB-HANDLER ’A)))
15 (Y
16 (CATCH ’QUIT (TESTER BOMB-HANDLER ’B))))
17 (SPAWN

18 (PROGN (DO ((I 10. (1− I)))
19 ((= I 0)
20 (PRINT ‘(KILLING A))
21 (BOMB-HANDLER ’KILL ’A ()))
22 (PRINT ‘(COUNTDOWN A ,I)))
23 (DO ((I 10. (1− I)))
24 ((= I 0)
25 (PRINT ‘(KILLING B))
26 (BOMB-HANDLER ’KILL ’B ()))
27 (PRINT ‘(COUNTDOWN B ,I)))))
28 (LIST X Y)))))

29 (DEFUN TESTER (BOMB-HANDLER LETTER)
30 (BOMB-HANDLER ’BOMB LETTER
31 (QLAMBDA T () (THROW ’QUIT LETTER)))
32 (DO ()(()) (PRINT LETTER)))

First we set up a process closure which will collect bombs and explode them. Line 2
defines the variable that will hold the bombs. A bomb is an ID and a piece of code.
Lines 3–12 define the bomb handler. It is a piece of code that takes a message type, an

19

§ 11 Killing Processes

ID, and a message It looks at the type; if the type is BOMB, then the message is a piece
of code. The ID/code pair is placed on the list, BOMBS. If the type is KILL, then the ID
is used to find the proper bomb and explode it.

Lines 13–28 demonstrate the use of the bomb-handler. Lines 14 and 16 are CATCH’s
that the bombs will kill back to. Two processes are created, each running TESTER.
TESTER sends a bomb to BOMB-HANDLER, which is a process closure that will
throw back to the appropriate CATCH. Because the process closure is created under one
of two CATCH’s, the THROW will kill the intermediate processes. The main body of
TESTER is an infinite loop that prints the second argument, which will either be the letter
A or the letter B.

The QLET on line 13 is eager. Unless something kills the two processes spawned
as argument calculation processes, neither X nor Y will ever receive values. But because
the QLET is eager, the SPAWN on line 17 will be evaluated. This SPAWN creates a
process closure that will kill the two argument processes.

The result of TEST is (LIST X Y), which will block while waiting for values until
the argument processes are killed.

The killing process (lines 17–27) counts down from 10, kills the first argument process,
counts down from 10 again, and finally kills the second argument process.

To kill the argument process, the BOMB-HANDLER is called with the message
type KILL and the name of the process as the ID. The BOMB-HANDLER kills a
process by searching the list, BOMBS, for the right bomb (which is a piece of code) and
then FUNCALLing that bomb.

Because a process closure is created for each call to TESTER (line 31), and because
one is spawned dynamically beneath the CATCH on line 14 and the other beneath the
CATCH on line 16, the BOMB-HANDLER will not be killed by the THROW. When
the process that is printing A is killed, the corresponding THROW throws A. Similarly
for the process printing B.

The value of TEST is (A B). Of course there is a problem with the code, which is that
the BOMB-HANDLER is not killed when TEST exits.

20

§ 12 Eager Process Closures

12. Eager Process Closures

We saw that EAGER is a useful value for the predicate in QLET applications, that
is, in constructions of this form:

(QLET pred ((x1arg1)
...

(xn arg2))
. body)

But it may not be certain what use it has in the context of a process closure.

When a process closure of the form:

(QLAMBDA ’EAGER (lambda-list) . body)

is spawned, it is immediately run. And if it needs arguments or a return address to be
supplied, it waits.

Suppose we have a program with two distinct parts: The first part takes some time to
complete and the second part takes some large fraction of that time to initialize, at which
point it requires the result of the first part. The easiest way to accomplish this is to start
a eager process closure, which will immediately start running its initialization. When the
first part is ready to hand its result to the process closure, it simply applies the process
closure.

Here is an example of this overlapping of a lengthy initialization with a lengthy com-
putation of an argument:

(LET ((F (QLAMBDA ’EAGER (X)
[Lengthy Initialization]
(OPERATE-ON X))))

(F [Lengthy computation of X]))

There are other ways to accomplish this effect in this language, but this is the most
flexible technique.

21

§ 12 Eager Process Closures

12.1 A Curious Example.

A curious example of this arises when the Y function is being defined in this language.

The Y function is the applicative version of the Y combinator, which can be used to
define LABELS (see Scheme [Steele 1978], [Sussman 1975]). We will briefly review the
problem that Y solves.

Suppose you write the code:

(LET ((CONS (LAMBDA (X Y) (CONS Y X)))) . . .),

will CONS refer to the CONS being defined or to the built-in CONS? The answer is that
it will refer to the built-in CONS, and this is not a non-terminating definition. It defines
a constructor that builds lists in the CAR rather than the traditional CDR direction.

The idea is that the LAMBDA creates a closure that captures the environment at
the time of the closure creation, but this environment does not contain the binding for
CONS because the process has not gotten that far yet—it is evaluating the form that will
be the value to place in the binding for CONS that it is about to make.

Suppose, though, that you want to define factorial in this style. You cannot write:

(LET ((FACT
(LAMBDA (N)
(COND ((ZEROP N) 1)

(T (∗ N (FACT (1− N))))))))
. . .)

because the recursive call to FACT refers to some global definition, which presumably
does not exist. Traditionally there is a LAMBDA-like form, called LABELS which gets
around this by creating a special environment and then re-stuffing the bindings appropri-
ately, but there is a way to avoid introducing LABELS, at the expense of speed.

There is a function, called the Y function, that allows one to define a recursive function
given an abstraction of the ‘normal’ definition of the recursive function. Here is an example
of the abstract version of FACT that we would need:

22

§ 12 Eager Process Closures

F = (LAMBDA (G)
(LAMBDA (N)
(COND ((ZEROP N) 1)

(T (∗ N (G (1- N)))))))

The key property of Y is: ∀f,Y(f) = f(Y(f)).

If we were to pass F the mathematical function fact, then F(fact) = fact in the
mathematical sense. That is, fact is a fixed point for F. If we define FACT to be Y(F),
FACT is also a fixed point for F, using the property given above. Actually, Y produces
the least fixed point of F, but you can read about that in a textbook.

The definition of Y in Lisp is:

(DEFUN Y (F)
(LET ((H (LAMBDA (G)

(F (LAMBDA (X)
(FUNCALL (G G) X))))))

(LAMBDA (X) (FUNCALL (H H) X))))

We can trace through the operation of Y briefly. Y(F) returns a function that looks
like:

(LAMBDA (X) (FUNCALL (H H) X))

with H that looks like:

(LAMBDA (G)
(F (LAMBDA (X)

(FUNCALL (G G) X))))

and F is bound to F above. What does (H H) return? Well, it is F applied to some
function, so it returns the inner LAMBDA closure—(LAMBDA (N) . . .)—in F above,
which will be applied to X: a good sign.

H takes a function—itself in this case—and binds it to the variable G. We can substi-
tute H for G throughout to get F being applied to:

23

§ 12 Eager Process Closures

(LAMBDA (X) (FUNCALL (H H) X))

But F simply makes up a closure that binds the variable G to the above closure and returns
it. So if evaluation ever applies G to something, it simply applies the above closure to its
argument. G would be applied to something in the event that a recursive call was to be
made. H is still bound as before, and the F within the H closure is bound to the code
for F. Thus we end up in the same situation as we were at the outset (that is what the
property ∀f,Y(f) = f(Y(f)) means!).

The machinations of this construction have the effect of providing another approxi-
mation to the function fact as it is needed, by carefullly packaging up new closures that
will present the code for F over and over as needed.

This is pretty expensive in time and space. It turns out that we can define QY as
follows:

(DEFUN QY (F)
(LET ((H (LAMBDA (G)

(F (QLAMBDA ’EAGER (X)
(FUNCALL (G G) X))))))

(QLAMBDA ’EAGER (X)
(CATCH (NCONS ()) (FUNCALL (H H) X)))))

QY is just like Y, except that the major closures are eager process closures, and
there is a CATCH at the toplevel. The eager process closure at the toplevel will run
until it blocks, which means until it needs the value of X. So (H H) will begin to be
evaluated immediately. Likewise, subsequent applications of F will start off some pre-
processing. Essentially, QY will start spawning off processes that will be pre-computing
the approximations spontaneously. They block when they need return addresses, but they
are ready to go when the main process, the one calculating factorial, gets around to them.

The CATCH stops the spawning process when we get to the end.

The performance of QY is between that of Y and LABELS, because QY pipelines
the creation of the approximations.

24

§ 13 Performance

13. Performance

The whole point of this language is to provide high performance for Lisp programs.
Because the speed of light and the size of objects needed to build circuits limits the expected
speed of a single-processor computer, we need multi-processors to achieve higher speeds
than these limits imply.

If the language provided cannot achieve speedups that improve as we increase the
number of processors in a multi-processor configuration, then there is no point in using
that language or in pursuing its implementation.

Because there are few true multi-processors on the market and because it is difficult to
vary the parameters of the performance of hardware to study the effects of the variations,
we have chosen to write a rudimentary simulator for this language. With this simulator
we have performed a small number of experiments. In this section we will briefly describe
that simulator and review some of the results.

13.1 The Simulator

The simulator simulates a multi-processor with a shared memory and a variable num-
ber of processors. So far we have simulated configurations with 1 to 50 processors. The
simulator is an interpreter for the language described above. Processes are scheduled on
the least busy processor as they are invoked, but no other load-balancing is performed. The
scheduling is round-robin, but the effect of queues of jobs within a processor is modelled—
so that a process in a wait state does not impact the reported performance of the multi-
processor (much).

Two important aspects of the expected performance are modelled carefully: the time
that it takes to create a process and the time that it takes for the same memory location to
be accessed simultaneously by several processors. In creating processes to achieve QLET

application, closures must be created to capture the environment that the argument forms
must evaluate within. This can be a significant overhead in a real implementation. As-
pects that are not well-modelled are the communications overhead (sending and receiving
messages), simultaneous access to the same memory region by two processors, and schedul-
ing overhead. The various overheads associated with processes can be modelled, to some
extent, by increased process creation times.

Lisp functions in the underlying Lisp take one unit of time; if one wishes to be more ex-
act in the simulator these functions must be re-written in the interpreted multi-processing
Lisp. Function calls take around 3 units of time and assignments 1 unit, for example.

25

§ 13 Performance

The simulator comprises 60,000 characters of Lisp code and runs in PDP-10 MacLisp
and in Symbolics 3600 ZetaLisp.

13.2 Fibonacci

The first simulation is one that shows that in a real multi-processor, with a small
number of processors and realistic process creation times, the runtime tuning provided by
the predicates in the QLET’s is important. The Figure 1 shows the performance of the
Fibonacci function written as a parallel function on a multi-processor with 5 processors.

Here is the code:

(DEFUN FIB (N DEPTH)
(COND ((= N 0) 1)

((= N 1) 1)
(T
(QLET (< DEPTH CUTOFF)

((X
(FIB (− N 1) (1+ DEPTH))

(Y
(FIB (− N 2) (1+ DEPTH)))))

(+ X Y)))))

Although this is not the best way to write Fibonacci it serves to demonstrate some of
the performance aspects of a doubly recursive function.

The x-axis is the value of CUTOFF, which varies from 0–20; the y-axis is the runtime
in simulator units. The curves are the plots of runs where the process creation time is set
to 0, 20, 40, and 100, where 3 such units is the time for a function call.

As can be seen, for nearly all positive process creation times, the program can be tuned
to the configuration; and for high process creation times, this is extremely important. The
curves all flatten out because only 177 processes are required by the problem, and beyond a
certain cutoff, which is the depth of the recursion, all of these processes have been spawned.

13.3 Adding Up Leaves

The performance of a parallel algorithm can depend on the structure of the data.
Not only can a process be serialized by requiring a single shared resource—such as a data

26

§ 13 Performance

structure—but it can be serialized by the shape of an unshared data structure. Consider
adding up the leaves of a tree. We assume that the leaves of a tree—in this case a Lisp
binary tree—can either be () or a number. If a leaf is () it is assumed to have value 0.

Here is a simple program to do that:

(DEFUN ADD-UP (L)
(COND ((NULL L) 0)

((NUMBERP L) L)
(T (QLET T ((N (ADD-UP (CAR L)))

(M (ADD-UP (CDR L))))
(+ N M)))))

The curves in Figure 2 show the speedup graphs for this program on a full binary tree
and on a CDR tree. A full binary tree is one in which every node is either a leaf or its left
and right subtrees are the same height. A CDR tree is one in which every node is either
a leaf or the left son is a leaf and the right son is a CDR tree.

These ‘speedup’ graphs have the number of processors on the x-axis and the ratio of
the speed of one processor to the speed of n processors on the y-axis. Theoretically with
n processors one cannot perform any task faster than n times faster than with one, so the
best possible curve would be a 45◦ line.

Note that a full binary tree shows good speedup because the two processes sprouted
at each node do the same amount of work, so that the load between these processes are
balanced: If one process were to do the entire task, it would have to do the work of one
of the processes and then the work of the other, where the amount of work for each is the
same. With a CDR tree, the process that processes the CAR immediately finds a leaf
and it terminates. If a single process were to do the entire task, it would only need to do
a little extra work to process the CAR over what it did to process the CDR.

From this we see that the structure of the data can serialize a process.

Let’s look at another way to write this program, which will demonstrate the serializa-
tion of a shared resource:

27

§ 13 Performance

(DEFUN ADD-UP (L)
(LET ((SUM 0))
(LET ((ADDER

(QLAMBDA T (X)
(SETQ SUM (+ SUM X)))))

(QCATCH ’END
(NO-WAIT (SPAWN (ADD-ALL ADDER L))))

SUM)))

(DEFUN ADD-ALL (ADDER X)
(COND ((NULL X) T)

((NUMBERP X)
(WAIT (ADDER X)))

(T (SPAWN (ADD-ALL ADDER (CAR X)))
(ADD-ALL F (CDR X)))))

This program works by creating a process closure (called ADDER in ADD-UP) that
will perform all of the additions. SUM is the variable that will hold the sum.

ADD-ALL searches the tree for leaves. When it finds one, if the leaf is (), the process
returns and terminates; if the leaf is a number, the number is sent in a message to ADDER.
Then the process returns and terminates. We WAIT for ADDER in ADD-ALL so that
SUM cannot be returned from ADD-UP before all additions have been completed.

If the node is an internal node, a process is spawned which explores the CAR part,
while the current process goes on to the CDR part. The performance of this program is
not as good as the other because ADDER serializes the additions, which form a significant
proportion of the total computation. If the search for the leaves were more complex, then
this serialization might not make as much difference. The curves in Figure 3 show the
speedup for this program on the same full binary and CDR trees as in Figure 2.

13.4 Data Structures

As we have just seen, the shape of a data structure can influence the achieved degree of
parallelism in an algorithm. Because most modern Lisps support arrays and some support

28

§ 13 Performance

vectors, we recommend using arrays and vectors over lists and even trees—these random-
access data structures do not introduce access-time penalties that could adversely affect
parallelism. To assign a number of processes to subparts of a vector only requires passing
a pointer to the vector and a pair of indices indicating the range within which the process
is to operate.

13.5 Traveling Salesman

The performance of an algorithm can depend drastically on the details of the data
and on the distribution of the processes among the processors. A variant of the traveling
salesman illustrates these points.

The variant of the traveling salesman problem is as follows: Given n cities represented
as nodes in a graph where the arcs between the nodes are labelled with a cost, find the
path with the lowest total cost that visits each of the cities, starting and ending with a
given city. That is, we want to produce the shortest circuit.

The solution we adopt, for illustrative purposes, is exhaustive search. We will sprout
a process that takes as arguments a control process, a node, a path cost so far, and a path.
This process will check several things: First it sees whether the path cost so far is less than
the path cost of the best circuit known. If not, the process dies. Next the process checks
whether the node is the start node. If so, and if the path is a complete circuit—if it visits
every node—then the control process is sent a progress report which states the path cost
and the path.

Failing these, the process spawns a process for each outgoing arc from the node,
including the arc just traversed to get to this node—it is possible that a node is isolated
with only one arc connecting it to the remainder of the graph.

The control program simply keeps track of the best path and its cost. It maintains
these as two separate global variables, and its purpose is to keep them from being updated
inconsistently.

The key is that it may take a long time to find the first circuit—initially the best path
cost is ∞. Once a circuit is found many search processes can be eliminated. If there are
relatively few processors and many active processes, then the load on each processor can
interfere with finding the first circuit, and many processes can be spawned, increasing the
load. We have intentionally kept the problem general and not subject to any heuristics

29

§ 13 Performance

that would help find a circuit rapidly, in order to explore the performance of various
multi-processors on the problem.

Figure 4 shows the speedup graph. Two things are of note. One is that it wildly
fluctuates as the number of processors increases. Drawing a smooth curve through the
points results in a pleasing performance improvement, but the fluctuations are great, and
in particular 21 processors does much better than 31, even though 36 processors is better
than either of those configurations.

In the round-robin scheduler, the positioning of the process—relative to the other
processes—that will find the first complete circuit is critical, especially when those pro-
cesses are sprouting other processes at a high rate.

The graph, by the way, is for a problem with only 5 cities.

The second thing to note is that the graph goes above the curve of the theoretically best
performance—the 45◦ line. This is because the 1 processor case is sprouting processes, and
is thrashing very much worse than a non-multi-processed version of the algorithm would.
In other words, all such speedup graphs need to be normalized to the highest point of
curve, not the 1 processor case.

13.6 Browse

Browse is a benchmark used as one of a series of benchmarks for evaluating the
performance of Lisp systems. [Gabriel 1982] It essentially builds a data base of atoms and
their property lists. Each property list contains some ‘information’ in the form of a list of
tree structures. The list of atoms is randomized and a sequence of patterns is matched, one
at a time, against each of the tree structures on the property list of each of the atoms. In
this pattern matcher EQL objects match, ‘?’ variables match anything, and ‘∗’ variables
match a list of 0 or more things. A variable of the form ‘∗-atom’ must match the same list
with each occurrence.

The pattern matcher and the control of the exhaustive matching have been written
as parallel code. This sort of ‘searching’ and matching in data bases of this form is typical
of many artificial intelligence programs, especially expert systems. The performance of
multi-processors on this benchmark is remarkable.

Two curves are shown in Figure 5: One shows the speedup with the process creation
time set to 10 (where a function call is 3), and the other is with the process creation
time set to 30. In both cases there is near linear improvement as the number of processors

30

§ 13 Performance

increases. Approximately 1000 processes are sprouted in this benchmark, although at most
187 processes are alive at any given time, averaging 117 with a standard deviation of .25.

14. Conclusions

We have presented a new language for multi-processing. A variant of Lisp, this lan-
guage features a unique and powerful diction for parallel programs. Parallel constructs are
expressed elegantly, and the language extensions are entirely within the spirit of Lisp.

The problem of runtime tuning of a program is addressed and adequately solved.
The performance of programs written in this language as a function of the size of the
multi-processor is explored.

Multi-processors that support shared memory among processors is important, and
even some or all of the nodes in a distributed system should be multi-processors of this
style. To achieve maximum performance we will need to pull every trick in the book, from
coarse-grained down to fine-grained parallelism. This language is a step in the direction of
achieving that goal by allowing programmers to easily express parallel algorithms.

15. Acknowledgments

We would like to thank Jeff Ullman whose questions and comments provided precise
direction to some of this work.

References

[Gabriel 1982] Gabriel, R. P., Masinter, L. M. Performance of Lisp Systems, Proceedings
of the 1982 ACM Symposium on Lisp and Functional Programming, August 1982.

[Smith 1978] Smith, Burton J., A Pipelined, Shared Resource MIMD Computer in Pro-

ceedings of the International Conference on Parallel Processors, 1978.

[Steele 1978] Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on
SCHEME: A Dialect of LISP, AI Memo 452, Massachusetts Institute of Technology
Artificial Intelligence Laboratory, Cambridge, Massachusetts, January, 1978.

[Steele 1984] Steele, Guy Lewis Jr. et. al. Common Lisp Reference Manual, Digital
Press, 1984.

31

§

[Sussman 1975] Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An Inter-
preter for Extended Lambda Calculus, Technical Report 349, Massachusetts Institute
of Technology Artificial Intelligence Laboratory, Cambridge, Massachusetts, Decem-
ber, 1975.

32

